

AQUATIC INSECTS OF WISCONSIN

Generic Keys and Notes on Biology, Ecology and Distribution

Technical Bulletin No. 89
Department of Natural Resources
Madison, Wisconsin
1975

With Generic Keys and Notes on Biology, Ecology, and Distribution
by
William L. Hilsenhoff

Technical Bulletin No. 89 Department of Natural Resources Madison, Wisconsin 1975

CONTENTS

2 INTRODUCTION

3 PLECOPTERA (Stoneflies)
7 EPHEMEROPTERA (Mayflies)
12 ODONATA (Dragonflies)
17 AQUATIC HEMIPTERA (Bugs)
21 TRICHOPTERA (Caddisflies)
30 MEGALOPTERA (Fishflies and Alderflies)
30 AQUATIC NEUROPTERA (Spongilla Flies)
31 AQUATIC LEPIDOPTERA (Moths)
31 AQUATIC COLEOPTERA (Beetles)
42 AQUATIC DIPTERA (Flies and Midges)
52 GLOSSARY

The most recent keys to genera of aquatic insects in North America appear in Pennak (1953), Usinger (1956), and Edmundson (1959), but many taxonomic advances have been made since their publication. Increased interest in the aquatic environment has led to a demand for up-to-date keys to aquatic insects. I have attempted to fill that demand by providing generic keys to aquatic insects that occur in Wisconsin. These keys are restricted to genera that are likely to be found in Wisconsin, and treat only aquatic stages of those genera. The regional scope of the keys eliminates many genera that occur only in distant parts of North America, thus simplifying their use. Although the keys are intended for use in Wisconsin, they should also be applicable

KEY TO ORDERS OF AQUATIC INSECTS IN WISCONSIN

1a. Thorax with 3 pairs of segmented legs 3
1b. Thorax without segmented legs 2
2a. Mummy-like, in a case, often silk-cemented and containingvegetable or mineral matterpupae (not keyed)
2b. Not in a case; mobile larvae, mostly with prolegs or pseu-dopods on one or more segmentsDIPTERA
3a. With wings or external wing pads (may be inconspicuous) 4
3b. Wings or external wing pads absent 10
4a. With large, functional wings 5
4b. With wing pads or brachypterous wings 7
5a. Both pairs of wings completely membranous, with numerousveins ... not aquatic, adults of Plecoptera or Trichopterathat may enter water to oviposit.
5b. Front wings hardened, leather-like in basal half, or shell-like6
6a. Front wings hard, opaque, shell-like, and without veinationCOLEOPTERA adults
6b. Front wings hardened only in basal half, mostly membran-ous and with conspicuous veination near apex HEMIPTERA
7a. With 2 or 3 long, filamentous terminal appendages 8
7b. Terminal appendages absent or not filamentous 9
8a. Sides of abdomen with plate-like, feather-like, or leaf-likegills; usually with 3 tail filaments, occasionally only 2EPHEMEROPTERA
8b. Gills absent from middle abdominal segments; 2 tail fila-ments
PLECOPTERA
9a. Labium forming on elbowed, extensile grasping organ
ODONATA
9b. Mouthparts sucking, formed into a broad or narrow tube
for neighboring states.
General information on the biology, ecological requirements, and distribution and abundance of genera in Wisconsin is also included. Appended to each key is a list of species that occur in Wisconsin; species and genera that may occur but have not yet been collected are marked with an asterisk. References to the most recent keys to species that are not monotypic are also included for most of the orders. Because of many uncertainties in identification, no list of species is appended for Diptera, Lepidoptera, or Neuroptera, and no effort has been made to denote by asterisks which species of Ephemeroptera have not been collected in Wisconsin.
10a. Mouthparts sucking, formed into a narrow tube 11
10b. Mouthparts not formed into a narrow tube 12
11a. Parasitic on sponges; all tarsi with one claw NEUROPTERA
11b. Free-living, walking on surface of water or swimming; meso-tarsi with two clawsHEMIPTERA
12a. Ventral abdominal prolegs each with a ring of fine hooks(crochets)LEPIDOPTERA
12b. Abdomen without ventral prolegs, except on terminal seg-ment13
13a. Antennae extremely small, inconspicuous, one-segmented13b. Antennae elongate, with 3 or more segments 14
14a. A single claw on each tarsus COLEOPTERA larvae
14b. Each tarsus with 2 claws 15
15a. With conspicuous lateral filaments 16
15b. Without conspicuous lateral filaments COLEOPTERA larvae
16a. Abdomen terminating in 2 slender filaments or a medianproleg with 4 hooksCOLEOPTERA larvae
16b. Abdomen terminating in a single slender filament or in 2prolegs, each with 2 hooksMEGALOPTERA

LITERATURE CITED

Edmondson, W. T., ed. 1959, Ward and Whipple, Freshwater Biology. John Wiley \& Sons, New York, London. 1248 pp.
Pennak, R. W., 1953. Freshwater invertebrates of the United States. Ronald Press, New York. 769 pp.
Usinger, R. L., ed. 1956. Aquatic insects of California. Univ. Calif. Press, Berkeley and Los Angeles. 508 pp.

This small hemimetabolous order is represented in Wisconsin by about 65 species. Nymphs inhabit streams of all sizes, but require high levels of dissolved oxygen and are not found in polluted streams. Low levels of pollution from pasturing cattle probably account for their absence from most streams in agricultural areas of southern Wisconsin. Although numerous in many streams where they are an important source of food for fish, they never become so abundant as to create nuisance problems.

Nymphs of all species are strictly aquatic. Adults of many species can be found close to streams from which they emerged; others fly many miles and are attracted to lights. Adults generally live one to five weeks, and some are known to feed on terrestrial algae. The biology of most species is poorly known, but recent studies indicate 6 to 18 nymphal instars, larger species with longer life cycles having the greatest number.

PTERONARCIDAE (1 genus, 2 species)

Both species are widely distributed throughout the state, the nymphs occurring most commonly among debris in fast water of medium to large streams. In Wisconsin the life cycle is 3 years, with emergence mostly in April and May. Nymphs are detritivores, and appear to be more tolerant of lowered dissolved oxygen levels than most other stoneflies.
NEMOURIDAE (5 genera, 9 species)
Several species are common in Wisconsin, and all have a one-year life cycle. Nymphs inhabit streams of all sizes and often are the only stoneflies to inhabit springs and spring runs. Adults emerge mostly in spring and early summer, depending on the species. One species of Amphinemura emerges in early fall. Nymphs may be encountered throughout the year among debris where they feed on diatoms and detritus, but they are very small in late fall.

LEUCTRIDAE (2 genera, 5 species)

Nymphs can be collected uncommonly throughout the year, but are mostly very small in the fall. All species are univoltine, with emergence from May through September, depending on the species. Adults feed on algae and hide in the vicinity of streams from which they emerged. Nymphs are detritivores, and are found among gravel and debris in fast, permanent streams.
CAPNIIDAE (3 genera, 10 species)
Adults of this family are known as "winter stoneflies" because they emerge from January (Allocapnia) through April (Paracapnia), and can frequently be found crawling on the ice and snow near streams. Paracapnia and Allocapnia nymphs occur abundantly in streams of all sizes, the latter even in temporary streams; Capnia is rare in northwestern Wisconsin. All species are univoltine, with Allocapnia spending spring and summer months in the substrate as tiny diapausing nymphs. Paracapnia nymphs remain active and can be found through the fall and winter. Nymphs feed on algae and detritus, and are found most abundantly in allochthonous debris.

TAENIOPTERYGIDAE (3 genera, 5 species)

Adults of this family are also "winter stoneflies," emerging in March and early April. The eggs hatch almost immediately, the small nymphs feed briefly, and then burrow into the substrate where they spend the late spring and summer in diapause. Mummy-like diapausing nymphs resume a normal appearance in September and commence feeding on allochthonous detritus and some diatoms. Taeniopteryx is common statewide along the banks and among debris in a wide variety of permanent streams.

PERLIDAE (7 genera, 10 species)

Attaneuria, Neoperla, and Perlinella occur uncommonly in larger streams, but the other genera are common in a wide variety of streams, especially in strong current where they cling to rocks or debris. Acroneuria, Paragnetina, and Phasganophora require at least two years to complete their development, adults emerging from May to July. Perlesta has a one-year life cycle with emergence in July or August, the nymphs being found mostly from May to August. Nymphs of all species are strictly carnivorous and feed mostly on Chironomidae, Ephemeroptera, and other insects.

PERLODIDAE (3 genera, 16 species)

Arcynopteryx is rare along the shores of Lake Superior, and recently isogenoides nymphs have been found only in cold streams in the northern fourth of the state. Isoperla occurs abundantly statewide in all types of unpolluted streams, where nymphs cling to rocks and debris. Nymphs of Isogenoides are strictly carnivorous and require one year to complete their development, adults emerging mostly in June. Although most species of Isoperla are also carnivores, at least two are herbivoredetritivores and others omnivores. Emergence of Isoperla occurs from April to July, depending on the species, but unlike Isogenoides, whose eggs hatch almost immediately, hatching of the eggs is delayed until fall in most species.

CHLOROPERLIDAE (3 genera, 6 species)

All species are apparently univoltine. Alloperla nymphs are uncommon and have been collected only from rapid streams in northern Wisconsin during the summer, while Hastaperla is fairly common throughout the northern half of the state in a wide variety of permanent streams. Nymphs of both genera are carnivores that prey mostly on larvae of Chironomidae. Adults of Hastaperla have been collected from May to July, but nymphs have been found only from November through May, suggesting a delayed hatching of eggs. Rasvena nymphs remain unknown.

KEY TO GENERA OF PLECOPTERA NYMPHS IN WISCONSIN

1a. Finely branched gills present ventrally or laterally on thorax
1b. Gills absent, confined to prosternum, or not branched.
2a. Finely branched gills on abdominal sterna 1 and 2
PTERONARCIDAE, Pteronarcys
2b. Gills absent from abdominal sterna
....... PERLIDAE 17
3a. Metathoracic wing pads strongly diverging from axis of body (Figs. 1, 2); robust nymphs with abdomen usually widest in basal third
3b. Metathoracic wing pads nearly parallel along inner margins (Figs. 3-7); elongate nymphs, with abdomen parallel-sided or widest in distal third
4a. Tips of glossae produced nearly as far forward as tips of paraglossae (Fig. 8)
4b. Tips of glossae situated much behind tips of paraglossae (Fig. 9) PERLODIDAE 23
5a. Second tarsal segment (side view) about as long as, or longer than first (Fig. 10) TAENIOPTERGIDAE 11
5b. Second tarsal segment much shorter than first (Fig. 11) ..
NEMOURIDAE 13

6a. Tips of glossae produced nearly as far forward as tips of paraglossae (Fig. 8)
6b. Tips of glossae situated much behind tips of paraglossae (Fig. 9)

CHLOROPERLIDAE 25
7a. Only first 6 abdominal segments, usually fewer, divided into terga and sterna by a membranous lateral fold (Fig. 12)

LEUCTRIDAE 8
7b. Terga and sterna of abdominal segments 1 to 9 divided by a membranous fold ventrolaterally (Fig. 13) CAPNIIDAE 9
8a. LEUCTRIDAE - Only first 4 abdominal segments divided by lateral fold

Leuctra
8b. First 6 abdominal segments divided by lateral fold
Zealeuctra
9a. CAPNIIDAE - Conspicuous bristles along posterior margin of posterior abdominal terga and on other parts of body (Fig. 14); head with dorsal purplish pattern ... Paracapnia
9b. Abdominal bristles inconspicuous and usually more uniformly distributed on each tergum (Fig. 15); head without distinct dorsal pattern 10
10a. Metathoracic wing pads notched near tip or absent (Fig. 4); tip of galea tapered or pointed (Fig. 16)

Allocapnia
10b. Metathoracic wing pads notched on inner margin halfway to tip (Fig. 5); tip of galea truncate, with a fringe of long hairs (Fig. 17)

Capnia
11a. TAENIOPTERYGIDAE - Single gills present on inner side of each coxa; ninth sternum only slightly produced (Fig. 18)

Taeniopteryx
11b. Gills absent; ninth sternum much produced (Fig. 19) . . 12
12a. Dorsum yellow with a distinct darker pattern Strophopteryx
12b. Dorsum uniformly brown, sometimes with indistinct light areas

Oemopteryx
13a. NEMOURIDAE - Four branched gills on prosternum
Amphinemura
13b. Prosternum without gills 14
14a. Pronotum with a lateral fringe (Figs. 20, 21) 15
14b. Pronotum without a definite lateral fringe (Fig. 22) 16
15a. Pronotum with shallow notch laterally; a longer, thinner seta in lateral fringe at anterolateral angles and near posterolateral angles (Fig. 20) Soyedina
15b. Pronotum rounded laterally; longer, thinner setae absent from lateral fringe (Fig. 21) Nemoura
16a. Only ventral bristles of cercal whorls longer than other bristles (Fig. 23); legs indistinctly banded Shipsa
16b. Dorsal and ventral bristles of cercal whorls longer than lateral bristles (Fig. 24); legs not banded Prostoia
17a. PERLIDAE - Eyes much anterior to hind margin of head (Fig. 25)
17b. Eyes situated normally, close to hind margin of head (Figs. 26-28) 18
18a. Anterior ocellus absent; distinct transverse occipital ridge across back of head (Fig. 26); subanal gills present (Fig. 29)

Neoperla
18b. Three ocelli present (Figs. 27, 28) 19
19a. A closely set regular row of spinules inserted on a low occipital ridge completely across back of head (Fig. 26) 20
19b. Occipital ridge absent; spinules on back of head present mainly at sides, or arranged in a transverse row of varying completeness, but always at least a little wavy or irregular (Fig. 27)

21
20a. Subanal gills present (Fig. 29) Phasganophora
20b. Subanal gills absent (Fig. 30) Paragnetina
21a. Back of head without spinules, except around eyes (Fig. 28) Acroneuria
21b. Back of head with an irregular row of large spinules (Fig. 27)

22a. Subanal gills present (Fig. 29); head patterned . . Perlesta 22b. Subanal gills absent (Fig. 30); head unicolorous brown .. Attaneuria
23a. PERLODIDAE - Submental gills present, usually twice as long as their greatest width (Fig. 31)

24

24a. Arms of Y-ridge of mesosternum meet posterior corners of furcal pits (Fig. 33)

Isogenoides
24b. Arms of Y-ridge approach anterior corners of furcal pits (Fig. 34); 3 large pale spots on each abdominal tergum (Lake Superior)

Arcynopleryx
25a. CHLOROPERLIDAE - Length of mature nymphs less than 7 mm ; metathoracic wing pads with inner margins parallel and with several long, pale setae projecting from apex (Fig. 6)

Hastaperla
25b. Length of mature nymph in excess of 7 mm ; metathoracic wing pads with inner margins diverging and with only a few inconspicuous setae at apex (Fig. 7)

Alloperla Rasvena not keyed

SPECIES LIKELY TO BE FOUND IN WISCONSIN AND MOST RECENT KEY TO SPECIES

PTERONARCIDAE (Adult and nymphal keys Harden and Mickel 1952)

Pteronarcys - dorsata, pictetii
NEMOURIDAE (Adult and nymphal keys Hitchcock 1974)
Amphinemura - delosa, linda, varshava*
Nemoura - trispinosa
Prostoia - completa, similis
Shipsa - rotunda
Soyedina - vallicularia
LEUCTRIDAE (Adult and nymphal keys Hitchcock 1974)
Leuctra - ferruginea, sibleyi, tenella, tenuis
Zealeuctra - narti
CAPNIIDAE (Adult and nymphal keys Harper and Hynes 1971)
Allocapnia - granulata, illinoensis, minima, nivicola, pygmaea, rickeri, vivipara
Capnia - vernalis
Paracapnia - angulata, opis
TAENIOPTERYGIDAE (Adult and nymphal keys Hitchcock 1974)
Oemopteryx - glacialis
Strophopteryx -fasciata
Taeniopteryx - burksi, nivalis, parvula
PERLIDAE (Adult and nymphal keys Hitchcock 1974)
Acroneuria - abnormis, internata, lycorias
Attaneuria - ruralis
Neoperla - clymene
Paragnetina - media
Perlesta - placida
Perlinella - drymo, ephyre
Phasganophora - capitata
PERLODIDAE (Adult and nymphal keys Hilsenhoff and Billmyer 1973)

Arcynopteryx* - compacta*
Isogenoides - frontalis, krumholzi*, olivaceus
Isoperla - bilineata, clio, cotta, dicala, frisoni, lata, marlynia,
nana, richardsoni, signata, slossonae, transmarina
CHLOPERLIDAE (Adult key Hitchcock 1974). No reliable key to nymphs.
Alloperla - caudata*, imbecilla*, quadrata*
Hastaperla - brevis, orpha
Rasvena - terna

LITERATURE CITED

Harden, P. H. and C. E. Mickel. 1952. The stoneflies of Minnesota (Plecoptera). Tech. Bull. Minn. Agr. Exp. Sta. 201: 1-84.
Harper, P. P. and H. B. N. Hynes. 1971. The Capniidae of eastern Canada (Insecta; Plecoptera). Can. J. Zool. 49: 921-940.
Hilsenhoff, W. L. and S. J. Billmyer. 1973. Perlodidae (Plecoptera) of Wisconsin. Great Lakes Entomol. 6: 1-14.
Hitchcock, S. W. 1974. Guide to the insects of Connecticut. Part VII. The Plecoptera or stoneflies of Connecticut. Bull. State Geol. Natur. Hist. Surv. Conn. 107: 1-262.

Figures 1-19. - Plecoptera. 1. Wingpads of Nemoura. 2. Wingpads of Isoperla. 3. Wingpads of Paracapnia. 4. Wingpads of Allocapnia. 5. Wingpads of Capnia. 6. Wingpads of Hastaperia. 7. Wingpads of Alloperla. 8. Labium of Nemoura showing location of glossae (G) and paraglossae (P). 9. Labium of Acroneuria showing location of glossae (G) and paraglossae (P). 10. Tarsal segments (1,2,3) of Taeniopteryx. 11. Tarsal segments
(1, 2, 3) of Nemoura. 12. Lateral view of abdomen of Leuctra showing lateral fold (LF). 13. Lateral view of abdomen of Allocapnia showing lateral fold (LF). 14. Abdominal terga 7 and 8 of Paracapnia. 15. Abdominal terga 7 and 8 of Allocapnia. 16. Galea of Allocapnia. 17. Galea of Capnia. 18. Ninth sternum (9) of Taeniopteryx. 19. Ninth sternum (9) of Strophopteryx.

Figures 20-34. - Plecoptera. 20. Pronotum of Soyedina. 21. Pronotum of Nemoura. 22. Pronotum of Prostoia. 23. Lateral view of terminal segments of a cercus of Shipsa. 24. Lateral view of terminal segments of a cercus of Prostoia. 25. Head of Perfinella showing location of anterior ocellus (AO) and posterior ocelli (PO). 26. Head of Neoperla showing occipital ridge (OR).
27. Head of Perlesta. 28. Head of Acroneuria. 29. Dorsal view of terminal segments of Phasganophora. 30. Dorsal view of terminal segments of Paragnetina. 31. Labium of Isogenenoides showing submental gills (G). 32. Labium of Isoperla. 33. Mesosternum of Isogenoides showing location of furcal pits (FP) and Y-ridge (Y). 34. Mesosternum of Arcynopteryx.

About 150 species occur in Wisconsin, where nymphs inhabit a wide variety of streams throughout the state. Although most species require high levels of dissolved oxygen, many are more tolerant of low dissolved oxygen levels than stoneflies, and are thus more widespread in Wisconsin's streams. Nymphs of some species can also be found in lakes, ponds, marshes, and swamps. Their abundance in clean streams makes them an important source of food for fish, and occasionally they are so abundant that synchronized emergences of adults create nuisance problems because of their attraction to lights.

Adult mayflies do not feed, and generally live only a few days. In this hemimetabolous order there is an extra winged stage between the nymph and adult, the subimago. It usually lasts less than one day and in some species only a few minutes. Most species are univoltine and have 3-20 nymphal instars. With few exceptions, nymphs are herbivores or detritivores.

SIPHLONURIDAE (5 genera, 18 species)

Isonychia is the most common genus, with nymphs being found commonly throughout the year among rocks and debris in rapid currents of a variety of streams. Most species in this genus are apparently bivoltine, while species in other siphlonurid genera are univoltine. Nymphs of Siphlonurus are fairly common among shoreline vegetation of larger streams in late fall and before their emergence in late spring. Ameletus and Parameletus are rare in Wisconsin. The former occurs in very small, rapid streams that may be temporary, and emerges in late spring. Parameletus develops rapidly in woodland pools in spring, emerging in May. Acanthametropus was collected in 1927 from the mouth of the Pecatonica River just south of Wisconsin, but has not been found since.

OLIGONEURIIDAE (1 genus, 1 species)

Homoeoneuria has been collected from the Rock River in lllinois and may occur in sand bottoms of deep, large rivers in southern Wisconsin.

HEPTAGENHDAE (9 genera, 24 species)

Nymphs of Heptagenia, Stenacron, and Stenonema are very common year-around in a wide variety of streams throughout the state. Species of Heptagenia and Stenonema also inhabit waveswept shorelines of lakes and have been found at depths of 50 feet or more in Lake Superior. Epeorus and Rhithrogena occur in rapid, clean streams in the northern half of the state where nymphs are relatively uncommon. Arthroplea nymphs are found in vernal pools near large streams in northern Wisconsin, developing rapidly and emerging in late May. Spinadis, Anepeorus, and Pseudiron are very rare in deep waters of large rivers, the difficulty of collecting in such habitats probably contributing to their apparent rarity. These three genera are unusual because of their carnivorous habits. With the exception of some bivoltine Heptagenia and Stenonema, heptageniids are univoltine.

METRETOPODIDAE (2 genera, 3 species)

Nymphs of Wisconsin's two genera are relatively uncommon among shoreline vegetation in slower waters of large streams. Adults emerge in late spring, with nymphs being present from late fall to emergence.

BAETIDAE (7 genera, 40 species)

Mayflies in this family occur in almost every stream, pond and weedy lake margin in the state. Baetis and Pseudocloeon nymphs are common in riffles and along banks of both clean and partially polluted streams during the warmer months, but are uncommon in winter. Most species are univoltine, but some have 2 generations each year. Centroptilum, Cloeon, and Heterocloeon are uncommon in Wisconsin's streams, and Paracloeodes has not been collected. Callibaetis is multivoltine, and nymphs
can be found among vegetation of almost every pond, lake margin, or stream backwater.

LEPTOPHLEBIIDAE (5 genera, 13 species)

Both Leptophlebia and Paraleptophlebia are common inhabitants of clean streams throughout the state, the former being found in slow water while the latter occurs in rapid water. Nymphs of Leptophlebia leave streams in early spring to enter vernal pools from which they emerge. Species of Paraleptophlebia and Choroterpes emerge from streams in late spring and summer. Habrophlebia and Habrophleblodes have not yet been found in Wisconsin, but should be collected in eddies along stream banks. All Leptophlebiidae are apparently univoltine in Wisconsin.

EPHEMERELLIDAE (1 genus, 19 species)

The only genus is represented by many species in Wisconsin and the nymphs can be found in a variety of habitats from shallow lake margins to very rapid streams. All species are univoltine, with emergence from spring throughout the summer, depending on the species. Most stream inhabiting species appear to be intolerant of lowered levels of dissolved oxygen and occur only in unpolluted streams. Species in one subgenus (Drunella) are omnivores, feeding on chironomid larvae as well as plant foods.

TRICORYTHIDAE (1 genus, 2 species)

Nymphs are fairly common among gravel in permanent streams of all sizes. There are at least two generations each year, with much overlapping. Nymphs are most commonly collected in summer and early fall, and are generally absent from spring collections.

CAENIDAE (2 genera, 10 species)

Caenis nymphs occur in a variety of aquatic habitats and appear more tolerant of low dissolved oxygen levels than any other mayfly. Nymphs can be commonly found in the littoral and sublittoral zones of lakes, in ponds and marshes, and in a wide variety of streams where they occur among debris in rapid or slow water. Brachycercus nymphs are uncommon among siltsand stream margins and have been found many miles from shore in Green Bay. Life cycles are poorly known.
POTAMANTHIDAE (1 genus, 2 species)
Nymphs can be found mostly in gravel bottoms of streams where the water is fairly shallow and rapid, but they are rarely abundant. The life cycle is apparently one year, with emergence throughout the summer months.

EPHEMERIDAE (4 genera, 8 species)

Species are univoltine, with synchronized emergences that sometimes create nuisance problems because of their attraction to light. Cities on the Mississippi River and the Great Lakes have experienced difficulties with emergences of Hexagenia. Burrowing nymphs of Hexagenia are common in silt bottoms of larger streams, while Ephemera nymphs burrow commonly in sand and gravel riffles of fast, clean streams, especially in northern Wisconsin. Pentagenia and Litobrancha are rare in Wisconsin.

POLYMITARCIDAE (2 genera, 3 species)

Nymphs of Ephoron are relatively uncommon, being found mostly under rocks in medium-sized, rapid streams. They are univoltine, with emergence during the summer months. Tortopus nymphs have not been collected in Wisconsin from their claybank habitat.

BAETISCIDAE (1 genus, 4 species)

Although the life cycle is one year, nymphs of different sizes often occur together, suggesting considerable overlap of generations. Nymphs are common in sandy streams with a thin layer of silt along the shores in which the nymphs can partially burrow.

KEY TO GENERA OF EPHEMEROPTERA NYMPHS IN WISCONSIN

1a. Mandibles with large forward-projecting tusks (Fig. 1); gills on abdominal segments 2-7 with fringed margins (Fig. 2) 2
1b. Mandibles without such tusks
8
2a. Gills dorsal, curving up over abdomen; protibiae fossorial (Fig. 3)
2b. Gills lateral, projecting from sides of abdomen; protibiae slender, subcylindrical (Fig. 4)

POTAMANTHIDAE Potamanthus
3a. Conspicuous frontal process between bases of antennae (Figs. 1, 5, 6)
3b. No such process; mandibular tusks with a single, prominent, subapical tooth on inner margin (Fig. 7)

POLYMITARCIDAE, Tortopus
4a. Mandibular tusks curve inward apically, upper surface with numerous tubercles (Fig. 8) . . POLYMITARCIDAE, Ephoron
4b. Mandibular tusks curve upward apically, no tubercles on upper surface (Fig. 9) EPHEMERIDAE 5
5a. EPHEMERIDAE - Frontal process bifid (Figs. 1, 6) 6
5b. Frontal process rounded, conical, or truncate (Fig. 5). . 7
6a. Mandibular tusks with teeth on outer or upper margin (Fig. 1); labial palpi 2-segmented

Penfagenia
6b. Mandibular tusks smooth on margins (Fig. 9); labial palpi 3-segmented

Ephemera
7a. Gills on abdominal segment 1 bifid Hexagenia
7b. Gills on abdominal segment 1 single Litobrancha
8a. Mesonotum modified into a carapace-like structure that covers the gills on abdominal segments 1-6 (Fig. 10)

BAETISCIDAE, Baetisca
8b. Mesonotum not modified into a carapace; gills exposed 9
9a. Gills absent from abdominal segment 2 , and sometimes from 1 and 3 also; gills on segment 3 or 4 may be operculate (Fig. 11)

EPHEMERELLIDAE, Ephemerella
9b. Gills present on abdominal segments 1 or 2 to 7 10
10a. Gills on abdominal segment 2 operculate or semi-operculate, covering or partially covering the gills on the succeeding segments (Figs. 12, 13)11

10b. Gills on abdominal segment 2 similar to other gills ... 13
11a. Operculate gills somewhat triangular and well separated from each other mesally (Fig. 12); succeeding gills without fringed margins

TRICORYTHIDAE, Tricorythodes
11b. Operculate gills quadrate and proximate mesally (Fig. 13); succeeding gills with fringed margins

CAENIDAE 12
12a. CAENIDAE - Three prominent tubercles on head (Fig. 14); maxillary and labial palpi 2 -segmented Brachycercus
12b. No tubercles on head; maxillary and labial palpi 3-segmented Caenis
13a. Head flattened dorso-ventrally; eyes and antennae dorsal (Figs. 15, 25); gills a single lamella, often with a fibrilliform tuft (Figs. 17, 18)

HEPTAGENIIDAE 14
13b. Not as above; antennae and eyes lateral (Fig. 16) 22
14a. HEPTAGENIIDAE - Nymph with only 2 tails 15
14b. Nymph with 3 tails . 16
15a. Prominent dorsal tubercles on head, thorax, and abdomen Spinadis
15b. No tubercles dorsally Epeorus
16a. Last pair of gills reduced to a single slender filament with tracheation reduced or absent (Fig. 17) 17
16b. Last pair of gills similar to preceding pairs (Figs. 18, 19) 18
17a. Lamellate gills pointed apically (Fig. 20) Stenacron
17b. Lamellate gills rounded or truncated apically (Figs. 21, 22)
Stenonema
18a. Gill lamellae enlarged on segments 1 and 7 ; all gills projecting ventrally to form a ventral disc (Fig. 19)

Ahithrogena
18b. Gill lamellae not as above, with those on segments 1 and 7 smaller than intermediate pairs

19

19a. Gills with a fingerlike projection on lamellae (Fig. 23); tarsal claws very long

Pseudiron
19b. Gill lamellae without such a projection; claws normal . . 20
20a. Gills ventral with fibrilliform portion large, lamellar portion small and fingerlike (Fig. 24)

Anepeorus
20b. Gills dorsal or lateral; fibrilliform portion smaller than lamellar portion

21
21a. Distal segment of maxillary palpi at least 4 times as long as galea-lacinia (Fig. 25)

Arthroplea
21b. Distal segment of maxillary palpi much shorter
Heplagenia
22a. Claws on prothoracic legs bifid (Fig. 26); claws of mesoand metathoracic legs long and slender, about as long as tibiae (Fig. 27)

METRETOPODIDAE 23
22b. Claws on all legs similar in structure 24
23a. METRETOPODIDAE - Gills on abdominal segments 1-3 double lamellae . Siphloplecton
23b. Gills on all segments single lamellae Metretopus
24a. Gills on abdominal segments 2-7 small, lateral, lanceolate, with a posterior fringe (Fig. 28); gills on segment 1 large, fibrilliform, and projecting between metacoxae

OLIGONEURIIDAE, Homoeoneuria
24b. Gills not as above 25
25a. Gills forked (Figs. 29-31), or bilamellate and terminating in a filament or point (Figs. 32, 34), or clusters of filaments (Fig. 35)

LEPTOPHLEBIIDAE 26
25b. Gills single or double lamellae (Figs. 45-47), sometimes with a ventral fibrilliform tuft

30
26a. LEPTOPHLEBIIDAE - Each gill on abdominal segments 2 to 6 consists of 2 clusters of filaments (Fig. 35)

Habrophlebia
26b. Gills forked or bilamellate 27
27a. Gills on abdominal segment 1 different in structure from succeeding pairs (Figs. 31-34) 28
27b. Gills on segments 1 to 7 narrowly lanceolate and bifid (Figs. 29, 30)

29
28a. Gills on segment 1 forked (Fig. 31), remaining gills bilamellate (Fig. 32) Lepiophlebia
28b. Gills on segment 1 single linear lamellae (Fig. 33), remaining gills bilamellate (Fig. 34)
. Choroterpes
29a. Front of labrum rather deeply emarginate (Fig. 36); posterolateral spines on abdominal segment 9 one-half as long as that segment (Fig. 37)

Habrophlebiodes
29b. Front of labrum only shallowly emarginate (Fig. 38); posterolateral spines on segment 9 not more than one-fourth as long as that segment (Fig. 39)

Paraleptophlebia
30a. Abdominal segments 8 and 9 produced posterolaterally into distinct, flattened spines (Figs. 40, 41); if spines are weak, antennae are less than twice width of head

SIPHLONURIDAE 31

30b. Abdominal segments 8 and 9 without such spines (Fig. 42); if weak spines are present (Fig. 43), antennae are more than twice width of head

BAETIDAE 35
31a. SIPHLONURIDAE - Prothoracic legs with a dense row of long setae on inner surface (Fig. 44); abdominal gills composed of single lamellae with a fibrilliform tuft. . Isonychia
31b. Prothoracic legs without a dense row of long setae; gills without a fibrilliform tuft

32
32a. Head, pronotum, and mesonotum with conspicuous lateral spines; a row of median spines on abdominal terga

Acanthametropus
32b. Without such spines
33
33a. Gill lamellae double on segments 1 and 2, and sometimes other segments (Fig. 45)

Siphlonurus
33b. Gill lamellae single on all segments (Figs. 46, 47) 34
34a. Gills with sclerotized band on ventral margin and little or no tracheation (Fig. 46); maxillae with a crown of pectinate spines

Ameletus
34b. Gills with well-developed tracheation (Fig. 47); maxillae without pectinate spines

Parameletus

35a. BAETIDAE - With only 2 well-developed tails, median tail absent or no longer than tenth tergum36
35b. With 3 well-developed tails, although median tail may beshorter and thinner than laterals, it is much longer thantenth tergum (Fig. 48)37
36a. Metathoracic wing-pads present, though they may be minute(Fig. 49)

Heterocloeon
36b. Metathoracic wing-pads absent Pseudocloeon
37a. Median tail shorter and often thinner than lateral ones (Fig.48); all gills single lamellae; tarsal claws short and denticu-late (Fig. 50)Baetis
37b. Median tail subequal to lateral ones (Fig. 51) 38
38a. Metathoracic wing-pads present 39
38b. Metathoracic wing-pads absent 40
39a. Gills double lamellae on abdominal segments 1 and 2, withventral lamella smaller (Fig. 52); lamellae with well-de-veloped palmately or pinately branched tracheaCallibaetis
39b. Gills single lamellae or with a small dorsal flap (Fig. 53);tracheation of gills sparse, with branches usually on innerside only

Centroptilum
40a. Mature nymph 3mm long; a large round pale spot with a dark border on second abdominal tergum; labial palpi 2segmented; gill lamellae single Paracloeodes
40b. Mature nymph at least 4 mm long; dark-bordered pale spot absent from second abdominal tergum; labial palpi 3-segmented; gill lamellae sometimes double or with a dorsal flap

Cloeon

SPECIES LIKELY TO BE FOUND IN WISCONSIN AND MOST RECENT KEY TO SPECIES

The most recent and complete keys to Ephemeroptera adults and nymphs are in Needham, Traver, and Hsu (1935) and Burks (1953). Nymphal keys are mostly incomplete and should be used with caution. Keys more recent and complete than the above are listed below.

SIPHLONURIDAE

Acanthametropus* - pecatonica
Ameletus - browni, lineatus, ludens, walleyi (Harper 1970)
Isonychia - bicolor, harperi, rufa, sadleri, sayi, sicca
Parameletus - croesus, midas
Siphlonurus - alternatus, marshalli, quebecensis, rapidus, typicus
OLIGONEURIIDAE
Homoeoneuria* - ammophila
HEPTAGENIIDAE - (Adult and nymphal keys Flowers and Hilsenhoff 1975)
Anepeorus* - simplex
Arthroplea - bipunctata
Epeorus - vitrea
Heptagenia - diabasia, flavescens, hebe, lucidipennis, pulla
Pseudiron* - centralis
Rhithrogena - impersonata, jejuna, pellucida, undulata

Spinadis - undescribed sp.
Stenacron - interpunctatum
Stenonema - bipunctatum, exiguum, fuscum, integrum, mediopunctatum, pulchelkum, rubrum, terminatum, tripunctatum

METRETOPODIDAE

Metretopus - borealis
Siphloplecton - basale, interlineatum

BAETIDAE

Baetis - anachris, baeticatus, brunneicolor, cingulatus, frondalis, hiemalis, intercalaris, ochris, pallidulus, pluto, propinquus, pygmaeus, spinosus, vagans
Callibaetis - brevicostatus, ferrugineus, fluctuans, hageni, skokianus
Centroptilum - album, bellum, convexum, rufostrigatum
Cloeon - alamance, insignificans, mendax, minor, rubropictum, simplex
Heterocloeon - curiosus
Paracloeodes* - minutum
Pseudocloeon - anoka, carolina, cingulatum, dubium, ellioti, ida, parvulum, punctiventris (Adult and nymphal keys Daggy 1941)

LEPTOPHLEBIIDAE

Choroterpes - basalis
Habrophlebia* - vibrans
Habrophlebiodes* - americana
Leptophlebia - cupida, iohnsoni, nebulosa
Paraleptophlebia - adoptiva, debilis, guttata, moerens, mollis, ontario, praepedita

EPHEMERELLIDAE - (Adult and nymphal keys Allen and Edmunds 1961, 1962a, 1962b, 1963a, 1963b, 1965)
Ephemerella - aestiva, attenuata, aurivilii, bicolor, catawba, cornuta, cornutella, deficiens, dorothea, excruclans, funeralis, invaria, lutulenta, needhami, rotunda, simplex, sordida, subvaria, temporalis

TRICORYTHIDAE

Tricorythodes - atratus, stygiatus

CAENIDAE

Brachycercus - lacustris, nitidus, prudens
Caenis - amica, forcipata, hilaris, jocosa, punctata, ridens, simulans
POTAMANTHIDAE
Potamanthus - myops, verticis
EPHEMERIDAE
Ephemera - simulans
Hexagenia - atrocaudata, bilineata, limbata, munda, rigida
Litobrancha - recurvata
Pentagenia - vittigera
POLYMITARCIDAE
Ephoron-album, leukon
Tortopus* - primus
BAETISCIDAE
Baetisca - bajkovi, lacustris, laurentina, obesa

Figures 1-20. - Ephemeroptera. 1. Dorsal view of head of Pentagenia. 2. Gills on right side of abdominal segment 3 of Hexagenia. 3. Prothoracic leg of Hexagenia. 4. Prothoracic leg of Potamanthus. 5. Frontal process (FP) of Hexagenia. 6. Frontal process (FP) of Ephemera. 7. Dorsal view of right mandibular tusk of Tortopus. 8. Dorsal view of right mandibular tusk of Ephoron. 9. Lateral view of right mandibular tusk of Ephemera. 10. Dorsal view of Baetisca. 11. Dorsal view of abdomen of

Ephemerella. 12. Dorsal view of abdomen of Tricorythodes showing operculate gills (OG). 13. Dorsal view of abdomen of Caenis showing operculate gills (OG). 14. Dorsal view of head of Brachycercus. 15. Dorsal view of head of Stenonema. 16. Dorsal view of head of Siphlonurus. 17. Left half of abdominal segments $6-10$ of Stenonema. 18. Right half of abdominal segments $6-10$ of Heptagenia. 19. Ventral view of abdomen of Rhithrogena showing gills (G). 20. Gill lamella of Stenacron.

Figures 21-53. - Ephemeroptera. 21. Gill lamella of Stenonema (rounded). 22. Gill lamella of Stenonema (truncate). 23. Ventral view of gill on abdominal segment 3 of Pseudiron (atter Burks 1953). 24. Gill on abdominal segment 5 of Anepeorus (after Burks 1953). 25. Dorsal view of head of Arthroplea showing maxillary palpi (MP). 26. Prothoracic leg of Siphloplecton. 27. Metathoracic leg of Siphloplecton. 28. Gill on abdominal segment 4 of Homoeoneuria. 29. Gill on abdominal segment 1 of Paraleptophlebia. 30. Gill on abdominal segment 3 of Paraleptophlebia. 31. Gill on abdominal segment 1 of Leptophlebia.
32. Gill on abdominal segment 3 of Leptophlebia. 33. Gill on abdominal segment 1 of Choroterpes. 34. Gill on abdominal segment 3 of Choroterpes. 35. Gill on abdominal segment 5 of Habrophlebia (after Burks 1953). 36. Labrum of Habrophlebiodes. 37. Dorsal view of abdominal segments 8-10 of Habrophlebiodes. 38. Labrum of Paraleptophlebia. 39. Dorsal view of abdominal segments $8-10$ of Paraleptophiebia. 40. Dorsal view of abdominal segments $8-10$ of Ameletus. 41. Dorsal view of abdominal segments 8 -10 of Siphlonurus. 42. Dorsal view of abdominal seg-
ments $8-10$ of Baetis. 43. Dorsal view of abdominal segments $8-10$ of Callibaetis. 44. Prothoracic leg of Isonychia with basal gill tuft (G). 45. Dorsal view of gill on left side of abdominal segment 3 of Siphlonurus. 46. Dorsal view of gill on right side of abdominal segment 5 of Ameletus. 47. Dorsal view of gill on abdominal segment 3 of Parameletus. 48. Tail filaments of Baetis.
49. Lateral view of meso- and metathorax of Baetis showing metathoracic wingpads (MW). 50. Tarsal claw of Baetis. 51. Tail filaments of Centroptilum. 52. Dorsal view of gill on right side of abdominal segment 3 of Callibaetis. 53. Dorsal view of gill on right side of abdominal segment 3 of Centroptilum.

LITERATURE CITED

Allen, R. K., and G. F. Edmunds. 1961. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). III. The subgenus Attenuatella. J. Kansas Entomol. Soc. 34: 161-173.
Allen, R. K., and G. F. Edmunds. 1962a. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). IV. The subgenus Dannella. J. Kansas Entomol. Soc. 35: 333-338.
Allen, R. K., and G. F. Edmunds. 1962b. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). V. The subgenus Drunella in North America. Misc. Pub. Entomol. Soc. Amer. 3: 147-179.
Allen, R. K., and G. F. Edmunds. 1963a. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). VI. The subgenus Serratella in North America. Ann. Entomol. Soc. Amer. 56: 583-600.
Allen, R. K., and G. F. Edmunds. 1963b. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). VII. The subgenus Eurylaphella. Can. Entomol. 95: 596-623.

Allen, R. K., and G. F. Edmunds. 1965. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). VIII. The subgenus Ephemerella in North America. Misc. Pub. Entomol. Soc. Amer. 4: 243-282.
Burks, B. D. 1953. The mayflies or Ephemeroptera of Illinois. Bull. III. Natur. Hist. Surv. 26: 1-216.
Daggy, R. H. 1941. Taxonomic and biological investigations on Minnesota mayflies (Ephemeroptera). Ph.D. Thesis, Univ. of Minnesota. 331 pp.
Flowers, R. W., and W. L. Hilsenhoff. 1975. Heptageniidae (Ephemeroptera) of Wisconsin. Great Lakes Entomol. (in press).
Harper, F. 1970. A new species of Ameletus (Ephemeroptera, Siphlonuridae) from southern Ontario. Can. J. Zool. 48: 603604.

Needham, J. G., J. R. Traver, and Y. C. Hsu. 1935. The biology of mayflies. Comstock Pub. Co., New York. 759 pp.

ODONATA (Dragonflies)

In this hemimetabolous order 127 species are known from Wisconsin, and diligent collecting will probably add 30 or more additional species to the state list. Most species inhabit ponds, marshes, and lake margins, but some typically inhabit streams. The order is divided into the suborders Anisoptera (dragonflies) and Zygoptera (damselflies), but disagreement exists on the composition of families, with Cordulidae and Macromiidae frequently considered subfamilies of Libellulidae.

Nymphs and adults are predaceous, and adults are considered highly desirable as predators of mosquitoes. Most species have one-year life cycles, but several require two or more years to complete nymphal development. Adults live several weeks to several months. In most species there are 10-12 nymphal instars.

CALOPTERYGIDAE (2 genera, 4 species)

Nymphs of both genera can be found statewide in permanent streams, especially among bank vegetation and snags of debris where the current is moderate. One or two years are required for nymphal development, depending on the species. Adults emerge in early summer.

LESTIDAE (1 genus, 9 species)

Nymphs inhabit vegetation of still, marshy, or bog-margined waters of ponds or small sheltered lakes. Several species develop in temporary ponds. All species are univoltine, emerging at various times throughout the summer.

COENAGRIONIDAE (8 genera, 33 species)

The most abundant family of damselflies, nymphs of most genera can be found year-around in almost every type of permanent lentic habitat with vegetation. Nymphs of Argia, however, occur in streams where they cling to rocks and debris in the current. Most, if not all species are univoltine, and adults can be
seen from April through October. Anomalagrion may be congeneric with ischnura; nymphs cannot be separated.

CORDULIGASTRIDAE (1 genus, 4 species)

Nymphs of Cordulegaster burrow in the substrate of small woodland streams. They have a 3 to 4 year life cycle, with adults emerging during the summer months.
GOMPHIDAE (10 genera, 31 species)
Nymphs inhabit mostly streams or margins of larger lakes, but species of Arigomphus, Gomphurus, and Gomphus may occur in ponds. Progomphus inhabits sandy lakes in central Wisconsin. Hagenius, Hylogomphus, and Stylogomphus are found only in northern Wisconsin. One-year life cycles are probably the rule for most species, but some may have much longer life cycles; Hagenius has a 4 -year life cycle. Various species emerge throughout the spring and summer months. Nymphs lie partially buried in sand or silt substrate to ambush their prey.

AESHNIDAE (6 genera, 18 species)

Nymphs of Basiaeschna, Boyeria, Nasiaeschna, and some species of Aeshna are found in streams, usually where the current is slow. Anax, Epiaeshna and other species of Aeshna inhabit ponds and margins of lakes where they climb about on vegetation. Most species have life cycles of one to three years, with emergence during the summer. An exception is Anax, which migrates into Wisconsin from the south in April and completes two or three generations before remaining nymphs are killed by freezing water.
MACROMIIDAE (2 genera, 4 species)
Nymphs are found uncommonly in muck, marl, and trash in slow areas of streams, or in lakes, where they lie near the surface to ambush prey. Emergence takes place in late spring or early summer, with most species probably being univoltine.

CORDULIIDAE (7 genera, 20 species)

Neurocordulia and Williamsonia are rare, and Cordulia, Somatochlora, and Williamsonia are restricted to northern Wisconsin. Tetragoneuria can become abundant, often forming huge swarms in spring and early summer. This family is closely related to the Libellulidae, and the nymphs have similar habits.

LIBELLULIDAE (12 genera, 35 species)

A widespread and abundant family, nymphs occur in permanent lentic habitats of all types. They crawl about on the bottom, among trash, or among weeds waiting to ambush their prey. Most species are probably univoltine with emergence from May to October. Species of Erythemis, Pachydiplax, Pantala, and Tramea are found only in southern Wisconsin.

KEY TO GENERA OF ODONATA NYMPHS IN WISCONSIN

1a. Abdomen terminating in 3 caudal lamellae, longest more than $1 / 3$ length of abdomen ZYGOPTERA 2
1b. Abdomen terminating in 3 stiff, pointed valves, longest less than $1 / 3$ length of abdomen ANISOPTERA 4
2a. First antennal segment as long as, or longer than, remaining segments combined; mentum with deep, median cleft (Figs. 1 and 2)

CALOPTERYGIDAE 8
2b. First antennal segment much shorter than others combined; mentum with at most a very small median cleft (Figs. 3, 4)

3a. Basal half of labium greatly narrowed and elongate (Fig. 3); labium in repose extends back to or past middle coxae

LESTIDAE, Lestes
3b. Basal half of labium not greatly narrowed (Fig. 4); labium in repose extends only to fore coxae COENAGRIONIDAE 9
4a. Mentum flat, or nearly so, without stout setae 5
4b. Mentum spoon-shaped, covering face to base of antennae and armed with stout setae
5a. Antennae 4 -segmented; mesotarsi 2 -segmented
GOMPHIDAE 15
5b. Antennae 6- or 7 -segmented; mesotarsi 3 -segmented
AESHNIDAE 24
6a. Labium with large irregular teeth on distal edge of lateral lobes CORDULEGȦSTRIDAE, Cordulegaster
6b. Labium with distal edge of lateral lobes entire or with small, even crenulations or teeth

7
7a. Head with a prominent, almost erect, thick frontal horn between bases of antennae, its width at base distinctly less than its length; legs very long, apex of each metafemur reaching to or beyond the apex of abdominal segment 8

MACROMIIDAE 30
7b. Head without a prominent, almost erect, thick frontal horn; legs shorter, apex of metafemora usually not reaching apex of abdominal segment 8

$$
\text { LIBELLULIDAE and CORDULIIDAE } 31
$$

8a. CALOPTERYGIDAE - Mentum cleft almost halfway to base (Fig. 1)

Calopteryx
8b. Mentum cleft only to base of lateral lobes (Fig. 2)
Hetaerina
9a. COENAGRIONIDAE - Distal margin of each lateral lobe produced into 3 pointed hooks, middle one shorter than end hook and usually about $1 / 2$ as long as movable hook (Fig. 5); median caudal lamellae usually $1 / 3$ to $1 / 2$ as broad as long and in some species quite thick or triquetral ... Argia
9b. Distal margin of each lateral lobe with a comparatively small end hook and a more or less truncate and denticulate middle lobe less than $1 / 3$ as long as movable hook (Fig. 4); caudal lamellae at mid-length less than $1 / 3$ as broad as long (except in Amphiagrion)

10a. Posterolateral margin on each side of head angulate, with angle projecting and forming a blunt tubercle (Fig. 6) .. 11
10b. Posterolateral margin on each side of head broadly rounded, no blunt tubercle (Fig. 7)

12
11a. Antennae 5- or 6-seginented; caudal lamellae each about $1 / 3$ as broad as long, margins thickly set with setae from base to apex

Amphiagrion
11b. Antennae 7 -segmented; caudal gills each not more than $1 / 6$ as broad as long, margins with only a few widely separated setae

Chromagrion
12a. Mentum with 1 or 2 dorsal setae on each side of median line, the second, when present, very small Nehalennia
12b. Mentum with 3 to 7 dorsal setae on each side (Fig. 4). . 13
13a. Antennae 6 -segmented
Enallagma
13b. Antennae 7 -segmented (fewer segments in young nymphs)
14a. Caudal lamellae terminating in a blunt point (Fig. 8)
Coenagrion
14b. Caudal lamellae terminating in a sharp tapered point (Fig. 9) Ischnura or Anamolagrion
15a. GOMPHIDAE - Naked antennal segment 4 generally about 1/4 as long as hairy segment 3 (Fig. 10); mesothoracic legs closer together at base than prothoracic legs. . Progomphus
15b. Segment 4 of antennae vestigial or nearly so (Fig. 11); mesothoracic legs not closer together at base than prothoracic legs
16a. Wing pads strongly divergent
Ophiogomphus
16b. Wing pads laid parallel along back 17
17a. Body very flat; abdomen nearly circular; paired tubercles on top of head

Hagenius
17b. Abdomen more nearly cylindrical; no tubercles on head 18
18a. Flattened antennal segment 3 nearly as wide as long (Fig. 12)

Stylogomphus
18b. Long antennal segment 3 more or less cylindrical (Fig. 11)
19a. Dorsal hook on segment 9 is a spinelike termination of middorsal ridge of segment 9 (Fig. 13) Dromogomphus
19b. Dorsal hook on segment 9, if present, rises above level of its rounded dorsum

20
20a. Mid-dorsal length of abdominal segments $9+10$ greater than width of 9 at its base
20b. Mid-dorsal length of abdominal segments $9+10$ less than width of 9 at its base 22
21a. Abdominal segment 10 shorter than wide and less than $1 / 2$ as long as abdominal segment 8; end hook on lateral lobe long, strong, incurved (Fig. 14)

Stylurus
21b. Abdominal segment 10 longer than wide, and more than $1 / 2$ as long as segment 8 ; end hook small, about size of lateral teeth (Fig. 15)

Arigomphus
22a. Abdomen moderately pointed to rear; small or vestigial mid-dorsal hooks on middle abdominal segments; no middorsal groove; segment 10 more than $1 / 2$ as long as wide Gomphus
22b. Abdomen ending more bluntly, narrowed abruptly on segment 9, where lateral spines are spinulose-serate on outer edge; segment 10 less than $1 / 2$ as long as wide
23a. Lateral spines on segment 9 apart from segment 10 and not much longer than those on 8 (Fig. 16); no distinct middorsal groove on middle abdominal segments; small species, grown nymph less than 27 mm

Hylogomphus
23b. Lateral spines on segment 9 close to segment 10 and much longer than those on 8 (Fig. 17); a mid-dorsal groove normally present on middle abdominal segments; large species, grown nymph $28-40 \mathrm{~mm}$

Gomphurus
24a. AESHNIDAE - Hind angles of head angulate; lateral spines present on abdominal segments 5-9

25
24b. Hind angles of head rounded; lateral spines present on abdominal segments 6 or 7-9 (In Aeshna eremita the hind angles of the head are slightly angulate and lateral spines are present on abdominal segments 5-9)

28

25a. Blade of lateral lobe of labium wide and squarely truncated on outer end (Fig. 18); tips of paraprocts incurved; a moundlike protuberance on each side of mesothorax at about mid-height Boyeria
25b. Blade of lateral lobe narrowed toward tip (Fig. 19); tips of paraprocts straight

26
26a. Dorsum of abdomen broadly rounded; epiproct about $2 / 3$ the length of paraprocts

Basiaeschna
26b. Dorsum of abdomen with a low median ridge; epiproct about same length as paraprocts

27
27a. Blunt dorsal hooks on median ridge of abdominal segments 7-9; cerci each less than $1 / 2$ as long as epiproct

Nasiaeschna
27b. No dorsal hooks on median ridge; cerci $3 / 4$ length of epiproct

Epiaeschna
28a. Lateral spines present on abdominal segments $7-9$ only (rarely an extremely small one on segment 6) 29
28b. Lateral spines present on abdominal segments 6-9. . Aeshna
29a. Truncated blade of lateral lobe with prominent end hook (Fig. 20); mentum 2 or more times as long as width at base Anax
29b. End hook not prominent (Fig. 21); mentum less than 1/12 times as long as width at base

Aeshna
30a. MACROMIIDAE - Lateral setae 6; dorsal setae 5-6 + 3-4

Macromia

30b. Lateral setae 5, dorsal setae $5+1-2 \ldots . .$. . Didymops
31a. LIBELLULIDAE and CORDULIIDAE - Abdomen with a middorsal hook, spine, or knob on segments 6 or $7 \ldots . .$. . 32
31b. Abdomen without mid-dorsal hooks, spines, or knobs on segments 6 and 7

44
32a. A mid-dorsal hook, spine or knob on abdominal segment 9
32b. No mid-dorsal hook, spine, or knob on abdominal segment 9 . 38
33a. Lateral spines of abdominal segment 9 reaching almost to tip of epiproct or beyond

CORDULIIDAE 34
33b. Lateral spines of abdominal segment 9 not reaching beyond mid-length of epiproct, usually only to its base 37
34a. No lateral spines on Segment $8 \ldots . . .$. . . . Williamsonia
34b. Distinct lateral spines on segment 8 35
35a. Mid-dorsal hooks knoblike, with apices blunt and rounded (Fig. 22); crenulations on distal margin of lateral lobe very deep, each crenula 2 or more times as long as wide (Fig. 23)

Neurocordulia
35b. Mid-dorsal hooks spinelike, with apices acuminate (Fig. 24); crenulations on distal margin of lateral lobe shallow, each crenula as long as or shorter than width

36
36a. Distal half of dorsal surface of mentum heavily setose; lateral setae 4 or 5

Epicordulia
36b. Distal half of dorsal surface of mentum with few, or usually, no setae; lateral setae 6-8

Tetragoneuria
37a. Each cercus about as long as epiproct; lateral setae 6-8 CORDULIIDAE, Somatochlora
37b. Each cercus about $2 / 3$ as long as epiproct; lateral setae 5 LIBELLULIDAE, Perithemis
38a. Each cercus $2 / 3$ to equal length of paraprocts; lateral setae 7 CORDULIIDAE, Dorocordulia
38b. Each cercus less than $2 / 3$ length of paraprocts
LIBELLULIDAE 39
39a. Dorsal setae on mentum 0-3; all inconspicuous ... Ladona
39b. Dorsal setae on mentum 7-21, all prominent
40
40a. Lateral spines of abdominal segment 9 long and straight, reaching to or beyond tips of paraprocts and about twice mid-dorsal length of segment 9 ; no mid-dorsal hook on segment 8

Celithemis

40b. Lateral spines of abaominal segmeri $\boldsymbol{\vartheta}$ iut ivw length of that segment; dorsal hook present or absent on segment 8
41a. Eyes small, projecting forward from anterolateral margins of head, and less than $1 / 2$ length of head (Fig. 25); (excluding labrum and clypeus); body with numerous long hairs
41b. Eyes larger and more lateral, occupying $1 / 2$ or more than 1/2 length of head (Fig. 26); body with only scattered long hairs
42a. Abdominal segments $7-9$ with brown or black, shining middorsal ridges; width of head across eyes less than 1 1/4 width of prothorax across dorsolateral ridges; distal margin of mentum crenulate

Plathemis
42b. Abdominal segments $7-9$ without dark mid-dorsal ridges; width of head across eyes more than $11 / 4$ width of prothorax across dorsolateral ridges; distal margin of mentum evenly contoured, not obviously crenulate Libellula
43a. Dorsal hook present on segment 3; epiproct and paraprocts about \& jual in length; dark markings usually present on abdominal sterna

Leucorrhinia
43b. No dorsal hook on segment 3; epiproct usually noticeably shorter than paraprocts; abdominal sterna without dark markings

Sympetrum
44a. Apical third of cerci and paraprocts strongly decurved; no lateral spines on abdomen; lateral setae 7-8

LIBELLULIDAE, Erythemis
44b. Apical third of cerci and paraprocts straight or only slightly decurved; lateral spines may or may not be present
45a. Lateral spines prominent on abdominal segment 8 , at least $1 / 4$ mid-dorsal length of that segment
45b. Lateral spines on abdominal segment 8 absent or so small they are difficult to see
46a. Lateral spines on abdominal segment 8 longer than middorsal length of that segment LIBELLULIDAE 47
46b. Lateral spines on abdominal segment 8 less than 2/3 middorsal length of that segment

48
47a. Epiproct as long as or longer than paraprocts Pantala
47b. Epiproct shorter than paraprocts Tramea
48a. Tips of lateral spines of abdominal segment 9 extending farther caudad than tip of epiproct

LIBELLULIDAE, Pachydiplax
48b. Tips of lateral spines of abdominal segment 9 not extending beyond tip of epiproct
49a. Each cercus not more than $1 / 2$ length of paraprocts

LJBELLULJDAE 50

49b. Each cercus more than $2 / 3$ length of paraprocts 51
50a. Lateral spines of abdominal segments 8 and 9 subequal in length; body hairy; abdominal sterna without dark markings Libellula
50b. Lateral spines of abdominal segment 9 about twice length of those of segment 8 ; body smooth; dark markings on abdominal sterna

Leucorrhinia
51a. Crenulations of distal margin of lateral lobes obsolete or shallow, each crenula less than $1 / 4$ as deep as broad; lateral setae 6; dorsal setae 9-11

LIBELLULIDAE, Nannothemis
51b. Crenulations of distal margin of lateral lobes of medium depth, each crenula $1 / 3$ to $1 / 2$ as deep as broad; lateral setae 7; dorsal setae 12-13 CORDULIIDAE, Cordulia
52a. Cerci each about equal in length to epiproct; crenulations on distal margin of lateral lobe deep

CORDULIIDAE, Somatochlora
52b. Cerci each $2 / 3$ length of epiproct or slightly less; crenulations on distal margin of lateral lobes obsolete

LIBELLULIDAE, Sympetrum
epiproct $=$ superior appendage paraproct $=$ inferior appendage cercus $=$ lateral appendage lateral lobe $=$ palpal lobe
lateral setae $=$ palpal setae
dorsal setae $=$ premental setae or mental setae
caudal lamellae $=$ caudal gills
mentum = prementum

SPECIES LIKELY TO BE FOUND IN WISCONSIN AND MOST RECENT KEY TO SPECIES

CALOPTERYGIDAE

Calopteryx - aequabilis, maculata (Adult and nymphal keys Walker 1953)
Hetaerina - americana, titia* (Adult keys Johnson 1972)
LESTIDAE (Adult and nymphal keys Walker 1953)
Lestes - congener, disiunctus, dryas, eurinus, forcipatus, inaequalis, rectangularis, unguiculatus, vigilax
COENAGRIONIDAE (Adult and nymphal keys Walker 1953)
Amphiagrion - saucium
Anomalagrion - hastatum
Argia - apicalis, bipunctulata*, moesta, sedula*, tibialis, translata*, violacea
Chromagrion - conditum
Coenagrion - angulatum*, interrogatum, resolutum
Enallagma - antennatum, aspersum, boreale, carunculatum, civile, clausum ${ }^{*}$, cyathigerum, divagans*, ebrium, exsulans, geminatum, hageni, signatum, traviatum*, vesperum
Ischnura - kellicotti*, posita*, verticalis
Nehalẹnnia - gracilis, irene
CORDULEGASTRIDAE (Adult and nymphal keys Needham and Westfall 1955 and Walker 1958)
Cordulegaster - diastatops*, erronea*, maculata, obliqua
GOMPHIDAE (Adult and nymphal keys Needham and Westfall 1955 and Walker 1958)
Arigomphus - cornutus, furcifer, submedianus*, villosipes*
Dromogomphus - spinosus
Gomphurus - externus, fraternus, lineatifrons*, vastus, ventricosus
Gomphus - exilis, graslinellus, lividus, quadricolor, spicatus
Hagenius - brevistylus
Hylogomphus - brevis, viridifrons*
Ophiogomphus - anomalus, aspersus, carolus, columbrinus, rupinsulensis
Progomphus - obscurus
Stylogomphus - albistylus
Stylurus - amnicola, laurae*, notatus, plagiatus*, scudderi, spiniceps
AESHNIDAE (Adult and nymphal keys Needham and Westfall 1955 and Walker 1958)
Aeshna - canadensis, clepsydra, constricta, eremita, interrupta, mutata*, sitchensis*, subarctica*, tuberculifera, umbrosa, verticalis
Anax - junius, longipes
Basiaeschna - janata

Boyeria - gratiana*, vinosa
Epiaeschna - heros
Nasiaeschna - pentacantha
MACROMIIDAE (Adult and nymphal keys Needham and Westfall 1955)

Didymops - transversa
Macromia - illinoiensis, pacifica, taeniolata*
CORDULIIDAE (Adult and nymphal keys Needham and Westfall 1955)

Cordulia - shurtleffi
Dorocordulia - libera
Epicordulia - princeps
Neurocordulia - molesta, yamaskanensis
Somatochlora - cingulata*, elongata, ensigera*, forcipata, franklini*, incurvata*, kennedyi, minor, tenebrosa*, walshii, williamsoni
Tetragoneuria - canis, cynosura, spinigera
Williamsonia - fletcheri
LIBELLŪLIDAE (Adult and nymphal keys Needham and Westfall 1955)

Celithemis - elisa, eponina, monomelaena
Erythemis - simplicicollis
Ladona - julia
Leucorrhinia - frigida, glacialis, hudsonica, intacta, proxima
Libellula - cyanea*, incesta, luctuosa, puichella,
quadrimaculata, semifasciata, vibrans
Nannothemis - bella
Pachydiplax - longipennis
Pantala - flavescens, hymenaea
Perithemis - tenera
Plathemis - Iydia
Sympetrum - ambiguum*, corruptum, costiferum, danae, internum, obtrusum, rubicundulum, semicinctum, vicinum
(Adult and nymphal keys Tai 1967)
Tramea - carolina, lacerata, onusta*

LITERATURE CITED

Johnson, C. 1972. The damselflies (Zygoptera) of Texas. Bull. Fla. Stāte Mus. Biol. Sci. 16: 55-128.
Needham, J. G. and M. J. Westfall, Jr. 1955. A manual of the dragonflies of North America (Anisoptera). Univ. Calif. Press, Berkeley and Los Angeles. 615 pp.
Tai, L. D. D. 1967. Biosystematic study of Sympetrum (Odonata: Libellulidae). Ph.D. Thesis, Purdue Univ. 234 pp.
Walker, E. M. 1953. The Odonata of Canada and Alaska. Vol. 1; I. General. II. The Zygoptera - damselflies. Univ. Toronto Press, Toronto. 292 pp.
Walker, E. M. 1958. The Odonata of Canada and Alaska. Vol. 2: III. The Anisoptera - four families. Univ. Toronto Press, Toronto. 318 pp .

Figures 1-26. - Odonata. 1. Ventral view of mentum of Calopteryx. 2. Ventral view of mentum of Hetaerina. 3. Dorsal view of mentum of Lestes. 4. Dorsal view of mentum of Enallagma showing dorsal setae (DS), lateral lobes (LL), lateral setae (LS), movable hook (MH), and end hook (EH). 5. Dorsal (inner) view of left lateral lobe of Argia. 6. Dorsal view of head of Amphiagrion. 7. Dorsal view of head of Enallagma. 8. Lateral caudal lamella of Coenagrion. 9. Lateral caudal lamella of Ischnura. 10. Antenna of Progomphus. 11. Antenna of Gomphus. 12. Antenna of Stylogomphus. 13. Lateral view of abdominal segments 8-10 of Dromogomphus showing epiproct (E), paraprocts
(P), and cercl (C). 14. Dorsal view of left lateral lobe of Stylurus. 15. Dorsal view of left lateral lobe of Arigomphus. 16. Dorsal view of terminal abdominal segments of Hylogomphus. 17. Dorsal view of terminal abdominal segments of Gomphurus. 18. Lateral lobe of Boyeria. 19. Lateral lobe of Baslaeschna. 20. Lateral lobe of Anax. 21. Lateral lobe of Aeshna. 22. Lateral view of middorsal hooks of Neurocordulia. 23. Lateral lobe of Neurocordulia. 24. Lateral view of mid-dorsal hooks of Tetragoneuria. 25. Dorsal view of head of Libellula. 26. Dorsal view of head of Leucorrhinia.

In this largely terrestrial order, about one-third of the families either live in the water or are closely associated with it. In the six aquatic families, eggs and nymphs remain in the water, and adults are away from the water only while making dispersal flights. Nymphs and adults of the five semiaquatic Hemipteran families run about on the surface of the water, leaving only for dispersal flights or to find suitable wintering sites. The Octeridae, Saldidae, and Gelastocoridae are also closely associated with water, but only individuals of the latter are likely to enter it.

This is a paurometabolous order. Nymphs of most species have 5 instars and closely resemble adults, except for their lack of wings and genitalia. In many genera of semiaquatic Hemiptera, apterous and brachypterous adults are frequent. The taxonomy of most groups has been thoroughly studied, and adults of almost all species can be accurately identified.

HEBRIDAE (2 genera, 4 species)

Often called "velvet bugs", these tiny creatures inhabit the surface of very shallow, still water that is covered with vegetation. They may frequently leave the water, with Hebrus probably belng more terrestrial than aquatic. Although tiny, they are predators and feed on other tiny insects and crustacea. Life cycles are poorly known, but they are probably multivoltine and overwinter as adults.

HYDROMETRIDAE (1 genus, 1 species)

The one Wisconsin species of "marsh treader" has been thoroughly studied. It is generally uncommon throughout the state where it may be found walking on algal mats among vegetation in very shallow, quiet water. It is multivoltine, and adults may live as long as one year. Hydrometrids are predators, usually feeding on insects in the surface film. Brachypterous adults are frequently encountered.

MESOVELIIDAE (1 genus, 3 species)
"Water treaders" are very common in late summer, but are absent in early spring because they overwinter as eggs. They have several summer generations, and by fall large numbers of these tiny yellow-green bugs can be found on duckweed or algal mats in sheltered areas of ponds and lake margins. Apterous and brachypterous adults are much more common than macropterous ones. They feed on small insects and other animals in the surface film.

GERRIDAE (5 genera, 15 species)

Most gerrids, often called "water striders", "pond skaters", or "wherrymen", are common throughout the state, especially in late summer. Limnogonus is rare and found only in southern Wisconsin, but the other genera are widely distributed in ponds, lakes, and streams. An exception is Metrobates, which occurs commonly only on larger streams. Most species are bivoltine or multivoltine, overwintering as adults. All are strict predators, and apterous and brachypterous forms are common.

VELIIDAE (2 genera, 8 species)

Microvelia inhabits weedy lake margins, ponds, marshes, and stream margins, while Rhagovelia is found only in streams. They are common statewide, especially in late summer. Like the other semiaquatic Hemiptera, they are predators, have several generations each summer, and have apterous, brachypterous, and macropterous forms.

NOTONECTIDAE (2 genera, 9 species)

Known as "backswimmers", notonectids are commonly found throughout the state in ponds, ditches, and lake margins with emergent vegetation. They overwinter as adults, have at least two generations each summer, and become most abundant in late summer and fall. They are fierce predators, and winged adults disperse widely.

PLEIDAE (1 genus, 1 species)
A singie species of "pigmy backswimmer" becomes abundant in weedy ponds and lake margins throughout the state in late summer and early fall, but disappears into wintering sites by November. They feed on tiny insects and crustacea, and probably complete at least two generations each summer.

NAUCORIDAE (1 genus, 1 species)

A single species of this predatory bug occurs uncommonly in certain ponds, sloughs, and stream margins in the southern third of the state. There are no more than two generations each summer, and perhaps only one.

NEPIDAE (2 genera, 4 species)

Nepa is rare among trash and debris in slow streams, ponds, and lake margins. Ranatra is a common summer inhabitant of weedy ponds and lake margins, but in the fall it flies into streams where it winters under the banks. Wisconsin species are probably bivoltine. They are called "water scorpions", and feed on other insects, small fish, and any other aquatic animals they are able to catch.

BELOSTOMATIDAE (2 genera, 3 species)

The "giant water bugs", especially Belostoma, are common statewide, and are sometimes called "electric light bugs" because of their attraction to light. These large predators breed in weedy ponds and lake margins where they normally complete two generations and then fly to streams in the fall to spend the winter months.

CORIXIDAE (10 genera, 56 species)

"Water boatmen", especially Hesperocorixa, Sigara, and Trichocorixa, are abundant throughout the state in a variety of aquatic habitats. Corisella and Palmacorixa are less frequently encountered, Callicorixa is restricted to northern Wisconsin, and the remaining genera are rare. They fly frequently and can be readily captured by light traps. In the fall, after completing about two generations, pond species fly to larger lakes and rivers which they use as overwintering sites. As herbivores, they are unique among aquatic Hemiptera.

KEY TO GENERA OF AQUATIC AND SEMIAQUATIC HEMIPTERA IN WISCONSIN (ADULTS)

1a. Antenna shorter than head, concealed in groove beneath eye; aquatic
1b. Antenna as long as head or longer, usually plainly visible; semiaquatic
2a. Rostrum broad, blunt, and triangular, not distinctly segmented; front tarsus a one-segmented scoop

CORIXIDAE 13
2b. Rostrum cylindrical or cone-shaped, distinctly 3- or 4-segmented; front tarsus not scooplike

3
3a. Abdomen with long, slender, rounded respiratory appendages (Fig. 1)

NEPIDAE 23
3b. Apical respiratory appendages, if present, short and flat 4
4a. Eyes protuberant; ocelli present; metathoracic legs without swimming hairs; $7-9 \mathrm{~mm}$ (mostly riparian).

GELASTOCORIDAE, Gelastocoris
4b. Eyes not protuberant; ocelli absent; metathoracic legs with swimming hairs
5a. Length 18 mm or more; short, flat, retractile apical appendages present (Fig. 2) BELOSTOMATIDAE 22
5b. Length less than 16 mm ; apical appendages absent. 6

6a. Profemora almost as wide as long; body flattened; length $10-12 \mathrm{~mm}$

NAUCORIDAE, Pelocoris
6b. Profemora elongate; body elongate or hemispherical; backswimmers

7
7a. Hemispherical; length $2.0-2.5 \mathrm{~mm}$. . PLEIDAE, Plea
7b. Elongate; more than 5 mm long NOTONECTIDAE 24
8a. Claws of at least protarsi inserted before apex (Fig. 3). . 9
8b. Claws of all tarsi at apex (Fig. 4) 10
9a. Metafemur very long, greatly surpassing apex of abdomen
GERRIDAE 25
9b. Metafemur short, not, or only slightly, surpassing apex of abdomen

VELIIDAE 29
10a. Head as long as entire thorax, very slender with eyes set about halfway to base; length $7.5-10.0 \mathrm{~mm}$

HYDROMETRIDAE, Hydrometra
10b. Head short and stout, eyes near posterior margin 11
11a. Wingless, or if winged, without veins in the membrane. . 12
11b. Winged, with veins in the membrane of hemelytra (riparian) SALDIDAE
12a. Lower part of head grooved to receive rostrum; legs without bristles; less than 2.5 mm long

HEBRIDAE 30
12b. Lower part of head not grooved; legs with scattered, stiff, black bristles (Fig. 5); length $2.5-4.0 \mathrm{~mm}$
. MESOVELIIDAE, Mesovelia
13a. CORIXIDAE - Rostrum without transverse grooves; pronotum without transverse dark bands; length $5.9-8.3 \mathrm{~mm}$
........ Cymatia
13b. Rostrum with transverse grooves; pronotum with transverse bands although they may be indistinct

14
14a. Entire hemelytral pattern usually effaced; upper surface of male pala deeply incised; vertex of male acuminate; both sexes with palar claw serrate at base; length $5.0-5.5 \mathrm{~mm}$.

Ramphocorixa
14b. Hemelytral pattern distinct, although limited areas may be effaced in some species . 15
15a. Small shining corixids, the males with sinistral asymmetry; apex of clavus not, or scarcely, exceeding a line drawn through costal margins at nodal furrows (Fig. 6); length $2.8-4.6 \mathrm{~mm}$

Trichocorixa
15b. Male asymmetry dextral; apex of clavus plainly exceeding a line drawn through costal margins at nodal furrows 16
16a. Pruninose area at base of claval suture short and broadly rounded at apex (Fig. 7), usually about $2 / 3$ as long as postnodal pruinose areas; prothoracic lobe truncate (Fig. 8); length $6.3-11.4 \mathrm{~mm}$

Hesperocorixa
16b. Pruinose area at base of claval suture narrowly rounded or pointed at apex (Fig. 9), and almost as long as postnodal pruinose area; prothoracic lobe rounded (Fig. 10) 17
17a. Markings on clavis transverse, those on corium transverse, longitudinal, or reticulate

18
17b. Markings on clavus and corium narrow and broken, usually open reticulate with many interconnections 19
18a. Corial pattern transverse and with little contrast; male strigil absent; male pala with two rows of pegs; length $6.9-8.1 \mathrm{~mm}$
18b. Corium usually with contrasting pattern, either transverse, longitudinal, or reticulate; male strigil present; male pala with one row of pegs (2 exceptions): length $3.6-9.2 \mathrm{~mm} .$.

Sigara

19a. Rear margin of head sharply curved, embracing a very short pronotum (Fig. 11); interocular space much narrower than the width of an eye; length $4.0-6.0 \mathrm{~mm} . .$. .. Palmacorixa
19b. Rear margin of head gently curved; interocular space about equal to the width of an eye (Fig. 12) 20
20a. Smooth, shining insects; male pala triangular; prothoracic lobe tapering to a narrowly rounded apex (Fig. 13); length $5.3-8.0 \mathrm{~mm}$

Corisella
20b. Rastrate, hairy species 21
21a. Eyes protuberant with inner anterior angles broadly rounded; postocular space broad; length $7.6-9.2 \mathrm{~mm}$. . Dasycorixa
21b. Eyes normal; postocular space narrow; length $6.8-7.8 \mathrm{~mm}$ Cenocorixa

22a. BELOSTOMATIDAE - Length $18-25 \mathrm{~mm}$....... . Belostoma
22b. Length greater than 40 mm Lethocerus
23a. NEPIDAE - Body oval, more than $1 / 3$ as wide as long; length $18-20 \mathrm{~mm}$. Nepa
23b. Body slender subcylindrical, stick-like; length $23-42 \mathrm{~mm} .$. . Ranatra
24a. NOTONECTIDAE - Slender; antennae 3-segmented; length $4.1-8.3 \mathrm{~mm}$

Buenoa
24b. Robust; antennae 4 -segmented; length $8.5-15.5 \mathrm{~mm}$.
Notonecta
25a. GERRIDAE - Inner margin of eyes concave behind middle (Fig. 14) . 26
25b. Inner margin of eyes convexly rounded 27
26a. Tarsal segments of prothoracic leg subequal in length; length $7.0-20.0 \mathrm{~mm}$. Gerris
26b. First tarsal segment of prothoracic leg much shorter than second; length $4.5-7.9 \mathrm{~mm}$. Limnogonus
27a. First antennal segment subequal in length to remaining three together; length $3.0-5.0 \mathrm{~mm}$. Metrobates
27b. First antennal segment much shorter than remaining three together
. 28
28a. Third antennal segment with several stiff bristles (Fig. 15); length $2.3-3.5 \mathrm{~mm}$

Rheumatobates
28b. Third antennal segment with fine pubescence only; length $3.0-4.3 \mathrm{~mm}$. Trepobates
29a. VELIIDAE - Mesotarsi with plumose hairs and leaflike claws (Fig. 16); length $3.4-4.6 \mathrm{~mm}$. Rhagovelia
29b. Mesotarsi without plumose hairs; length $1.5-3.0 \mathrm{~mm}$
Microvelia
30a. HEBRIDAE - Antennae 4-segmented; length $1.7-2.2 \mathrm{~mm}$ Merragata
30b. Antennae 5 -segmented; length $1.8-2.2 \mathrm{~mm}$ (riparian) Hebrus

SPECIES LIKELY TO BE FOUND IN WISCONSIN AND MOST RECENT KEY TO SPECIES

HEBRIDAE (Adult key Wilson 1958)
Hebrus - buenoi, burmeisteri
Merragata - brunnea, hebroides
HYDROMETRIDAE (monotypic)
Hydrometra - martini
MESOVELIIDAE (Adult key Hungerford 1924)
Mesovelia - cryptophila*, douglasensis*, mulsanti
GERRIDAE
Gerris - alacris*, argenticollis*, buenoi, comatus, contormis*,
dissortis, insperatus, marginatus, remigis
(Adult key Calabrese 1974)
Limnogonus - hesione
Metrobates - hesperius
Rheumatobates - rileyi
Trepobates - inermis, knighti, pictus (Adult key Drake and Harris 1932)

VELIIDAE

Microvelia - albonotata*, americana, buenoi, fontinalis, hinei, pulchella (Adult key Blatchley 1926)
Rhagovelia - obesa, oriander (Adult key Bacon 1956)
NOTONECTIDAE
Buenoa - confusa, limnocastoris, macrotibialis, margaritacea (Adult key Truxal 1953)
Notonecta - borealis, insulata, irrorata, Iunata, undulata
(Adult key Hungerford 1933)
PLEIDAE - (monotypic)
Plea - striola
NAUCORIDAE - (monotypic)
Pelocoris - femoratus

NEPIDAE (Adult keys Hungerford 1922)
Nepa - apiculata
Ranatra - fusca, kirkaldyi*, nigra

BELOSTOMATIDAE

Belostoma - flumineum
Lethocerus - americanus, griseus (Adult key Menke 1963)
CORIXIDAE (Adult key Hilsenhoff 1970)
Callicorixa - alaskensis*, audeni
Cenocorixa - bifida*, dakotensis, utahensis
Corisella - edulis, tarsalis
Cymatia - americana*
Dasycorixa -hybrida*
Hesperocorixa - atopodonta, interrupta, kennicottii, laevigata, lobata, lucida, michiganensis, minorella, nitida*, obliqua, scabricula, semilucida, vulgaris
Palmacorixa - buenoi, gillettei, nana
Ramphocorixa - acuminata
Sigara - alternata, bicoloripennis, compressoidea, conocephala, decorata, decoratella, defecta, dolabra, douglasensis, grossolineata, hubbelli*, johnstoni, knighti, lineata, mackinacensis, macropala, mathesoni, modesta*, mullettensis, penniensis, signata, solensis, transfigurata, trilineata, variabilis
Trichocorixa - borealis, calva, kanza, macroceps*, naias

LITERATURE CITED

Bacon, J. A. 1956. A taxonomic study of the genus Rhagovelia (Hemiptera: Veliidae) of the Western Hemisphere. Univ. Kansas Sci. Bull. 38: 695-913.
Blatchley, W. S. 1926. Heteroptera or true bugs of eastern North America with special reference to the faunas of Indiana and Florida. Nature Publ. Co., Indianapolis. 1116 pp.
Calabrese, D. M. 1974. Keys to the adults and nymphs of the species of Gerris Fabricius occurring in Connecticut. 25th Anniv. Mem. Conn. Entomol. Soc. pp. 227-266.
Drake, C. J., and H. M. Harris. 1932. A survey of the species of Trepobates Uhler (Hemiptera: Gerridae). Bull. Brooklyn Entomol. Soc. 27: 113-123.
Hilsenhoff, W. L. 1970. Corixidae (water boatmen) of Wisconsin. Trans. Wis. Acad. Sci. Arts and Let. 58: 203-235.
Hungerford, H. B. 1922. The Nepidae of North America. Univ. Kansas Sci. Bull. 14: 425-469.
Hungerford, H. B. 1924. A second new Mesovelia from the Douglas Lake, Michigan region (Hemiptera: Mesoveliidae). Ann. Entomol. Soc. Amer, 17: 453-456.
Hungerford, H. B. 1933. The genus Notonecta of the world. Univ. Kansas Sci. Bull. 21: 5-195.
Menke, A. S. 1963. A review of the genus Lethocerus in North and Central America, including the West Indies (Hemiptera: Belostomatidae). Ann. Entomol. Soc. Amer. 56: 261-267.
Truxal, F. S. 1953. A revision of the genus Buenoa. Univ. Kansas Sci. Bull. 35: 1351-1523.
Wilson, C. A. 1958. Aquatic and semiaquatic Hemiptera of Mississippi. Tulane Stud. in Zool. 6: 115-170.

Figures 1-16. - Hemiptera. 1. Dorsal view of posterior abdominal segments of Nepa. 2. Dorsal view of posterior abdominal segments of Belostoma. 3. Protarsus of Gerris. 4. Protarsus of Mesovelia. 5. Metathoracic leg of Mesovelia. 6. Dorsal view of female Trichocorixa showing clavis (CL), and nodal furrow (NF). 7. Lateral view of Hesperocorixa showing pruinose area (PA) of claval suture, clavis (CL), and corium (CO). 8. Ventrolateral view
of prothoracic lobe of Hesperocorixa. 9. Lateral view of claval suture of Sigara showing pruinose area (PA). 10. Ventrolateral view of prothoracic lobe of Sigara. 11. Dorsal view of head and pronotum of Palmacorixa. 12. Dorsal view of head and pronotum of Corisella. 13. Ventrolateral view of prothoracic lobe of Corisella. 14. Dorsal view of head of Gerris. 15. Antennae of female (F) and male (M) Rheumatobates. 16. Mesotarsus of Rhagovelia.

About 275 species of caddisflies probably occur in Wisconsin; 208 species were recently listed on the basis of adult identifications (Longridge and Hilsenhoff 1973). Lenarchulus pulchellus is a synonym, and Nyctiophylax affinis, N. celta, and N. moesta were identified and replace N. vestitus, a nomen dubium (Morse 1972). Additionally, larval collections of Nemotaulius hostilis and Psychoglypha subborealis would increase the number of Wisconsin species to 211. Although all species on the appended list may not occur in Wisconsin, additional undescribed species will undoubtedly be found. Larvae and pupae of most species cannot be accurately identified, and larval keys that do not contain all known species must be used with caution. Even some genera remain unknown as larvae.

Larvae and pupae of this holometabolous order are mostly stream inhabitants, but some occur in ponds, lakes, marshes, and specialized habitats such as springs. Their tolerance to organic pollution varies widely, with some species being quite tolerant. Their abundance in most streams makes them a valuable fisheries resource. Adults live a few days to several weeks, and many are strong fliers that travel many miles. Most are also attracted to lights, which aids in their collection, but may create nuisance problems near rivers where they are especially abundant. There are normally five larval instars, and carnivores, omnivores, herbivores, and detritivores are all represented by the various species. Most species are univoltine, with much overlapping of generations.

PHILOPOTAMIDAE (3 genera, 6 species)

Chimarra larvae are widespread inhabitants of a variety of streams where they feed on diatoms and algae on rocks and among debris. They construct their silken retreats usually in areas of rapid current. Emergence occurs in late spring and early summer. Dolophilodes and Wormaldia are restricted to small, cold, rapid streams, and the latter is rare. Dolophilodes adults may be found almost every month.

PSYCHOMYIIDAE (2 genera, 2 species)

The larvae occur in a variety of streams, but are relatively uncommon. They can be found mostly among cracks in decaying wood where they feed on algae and detritus. The two Wisconsin species are univoltine with emergence from May to August.
POLYCENTROPODIDAE (6 genera, 25 species)
The carnivorous larvae occur in a wide variety of streams where they construct silken retreats on rocks, decaying wood, or among debris. Polycentropus and Neureclipsis are the most common and widespread genera; a species of the latter is probably the most tolerant of any caddisfly to organic pollution. Polycentropus larvae also occur along margins of lakes. All species are probably univoltine.

HYDROPSYCHIDAE (7 genera, 40 species)
Hydropsyche and Cheumatopsyche are perhaps the most abundant and widespread caddisfly genera. Their omnivorous larvae can be found in almost every stream that is not severely polluted. Here they build retreats on rocks, logs, and other submerged objects in various currents. Although most species are univoltine, some may be bivoltine because adults are present from May to November. Diplectrona and Parapsyche are found among rocks only in cold, rapid streams, while Macronema may be locally common on rocks in certain streams of the northern half of the state. Potamyia larvae burrow into waterlogged wood in the deeper and slower waters of large streams in southern Wisconsin, and are especially abundant in the Wisconsin River. Larvae of Diplectrona and Parapsyche are omnivorous, while Macronema is mostly a herbivore and Potamyia an herbivoredetritivore. All of these genera are apparently univoltine, with adults emerging during late spring or summer.

RHYACOPHILIDAE (1 genus, 5 species)
Larvae are found only in rapid, cold streams where they cling to moss-covered rocks or debris lodged among the rocks. They have a one-year life cycle, with much overlapping. Larvae of Wisconsin species are mostly carnivorous, and adults are on the wing from May through August.

GLOSSOSOMATIDAE (3 genera, 8 species)

The larvae are herbivorous, living mostly on rocks from which they scrape algae, diatoms, and detritus. They inhabit clean, clear streams that are relatively free from organic enrichment. Glossosoma is common and widely distributed, with pupation during the late fall and winter and emergence from April into the summer. Agapetus is rare in the north, and Protoptila larvae are hard to find because of their very small size. Adults of these univoltine genera emerge in the summer.
HYDROPTILIDAE (10 genera, 46 species)
Because of their extremely small size, these "microcaddisflies" are easily overlooked, but judging from numbers of adults collected at light traps, they are certainly not as uncommon as larval collections would indicate. The herbivorous-detritivorous larvae can be found on stones, vegetation, sand, and a variety of other substrates in streams, lakes, and ponds. Most species are probably univoltine, but bivoltine species may exist. Adults are found from May through August.

BRACHYCENTRIDAE (2 genera, 10 species)

Brachycentrids are found in a variety of rapidly flowing streams, and are often abundant in those that are spring fed. Here Brachycentrus larvae attach to logs and rocks, and Micrasema larvae mostly inhabit moss that covers rocks. All species are univoltine, with emergence from spring to late summer, depending on the species. Young larvae are herbivores, but they consume more and more animal material as they grow.

PHRYGANEIDAE (7 genera, 17 species)

Larvae of Fabria and Hagenella are unknown, but adults have been collected in northern Wisconsin. Banksiola larvae inhabit ponds and lakeshore vegetation, while Phryganea, Ptilostomis, and Agrypnia are fairly common among vegetation of stream and lake margins, the former even occurring in deeper waters of lakes. Oligostomis larvae inhabit margins of fast, cold streams. All phryganeids are apparently univoltine and emerge in late spring or early summer. Feeding habits range from carnivorous - to herbivorous, with the former probably predominating.

GOERIDAE (1 genus, 1 species)
Often considered a subfamily of Limnephilidae, the distinctive larvae can be readily distinguished. They are herbivores that inhabit small, clean, rapid streams, but are never abundant. Pupation and emergence occur in late spring.

LIMNEPHILIDAE (18 genera, 54 species)

The herbivorous larvae are widespread and abundant in a variety of aquatic habitats. Some inhabit ponds and marshes (Anabolia, Asynarchus, Ironoquia, Arctopora, Limnephilus, Nemotaulius), some a variety of streams (Anabolia, Limnephilus, Neophylax, Pycnopsyche, Platycentropus), and others very specialized habitats such as springs and spring runs (Frenesia, Hesperophylax), small cold streams (Psychoglypha), small woodland streams (Hydatophylax), and pools in rocky northern streams (Onocosmoecus). Known species have a one-year life cycle, with emergence from early spring to late fall, depending on the species.

LEPIDOSTOMATIDAE (1 genus, 8 species)

Larvae inhabit a wide variety of cleaner streams throughout the state, where they can be found on rocks, in debris, and among moss covering rocks. The life cycle is one year, with
emergence during the summer. Although larvae may occasionally consume algae or animal material, they are mostly detritivores.

SERICOSTOMATIDAE (1 genus, 1 species)

Agarodes larvae are uncommon in medium to large streams with a sand and gravel bottom, and feed on diatoms and detritus among the gravel. They are probably univoltine, with emergence in July and August.

ODONTOCERIDAE (1 genus, 1 species)

The genus Psilotreta is uncommon in small, sand- and gravelbottomed creeks, where larvae feed on algae in the sand under rocks. Pupation occurs in spring, with emergence mostly in June.

MOLANNIDAE (1 genus, 4 species)

Larvae are uncommon, occurring most frequently under logs or rocks in sand- and gravel-bottomed clean streams or lake margins where they feed on algae and diatoms. Molannids are

KEY TO GENERA OF THE TRICHOPTERA LARVAE IN WISCONSIN

1a. Each thoracic segment covered with a single dorsal plate, which may have a mesal or transverse fracture line ... 2
1b. Metanotum mostly membranous, having only scattered hairs or small plates, or divided into 2 or more sclerites 19
2a. Abdomen with rows of branched gills; no portable case
HYDROPSYCHIDAE 3
2b. Abdomen without gills, and usually much enlarged; larvae less than 5 mm long and usually in barrel- or purselike cases which may be attached to the substrate

HYDROPTILIDAE 9
3a. HYDROPSYCHIDAE - Head with a broad, depressed, flat, dorsal area surrounded by an extensive arcuate carina (Fig. 1); anterior margin of protibiae and tarsi with a dense brush of pale setae

Macronoma
3b. Head not as above; protibiae and tarsi without setal brush
4a. Protrochantin forked (Fig. 2)
4
4b. Protrochantin simple (Fig. 3), sometimes with a dorsal spur
5a. Prosternal plate with a pair of detached, moderate-sized, posterior sclerites (Fig. 4) Hydropsyche
5b. Prosternal plate with at most a pair of detached, very minute, sclerotized dots (Fig. 5). (Potamyia with a large dorsal spur on protrochantin will key here, but ventral surface of head is pale. In Cheumatopsyche, only area around eye is pale)

Cheumatopsyche
6a. Genae completely separated by an elongate gula (Figs. 6, 7)

6b. Gula triangular and short, or virtually absent; genae fused for most of their length (Figs. 8, 9)

8
7a. Gula with sides nearly parallel (Fig. 6); abdomen with short, black scalelike setae on dorsum and arranged in tufts along posterior margin

Parapsyche
7b. Gula narrowed posteriorly (Fig. 7); abdomen with only coarse hairs of varying lengths, never in tufts. Arctopsyche
8a. Meso- and metanotum entire; mentum cleft (Fig. 8) Potamyia
8b. Meso- and metanotum divided by transverse fracture line in posterior third; mentum subconical, not cleft (Fig. 9)

Diplectrona
9a. HYDROPTILIDAE - Abdomen enlarged, at least some part of it much thicker than thorax (Fig. 10) 10
9b. Abdomen slender, not appreciably thicker than thorax; no case (early instars) Not Keyed
10a. Each abdominal segment with a small, dark, dorsal sclerite (Fig. 10); case translucent, ovoid, and flattened (Fig. 11a)..

Leucotrichia
10b. Abdominal segments 2 to 7 without dark, dorsal sclerites, at most with a small delicate ring or very pale scierites 11
univoltine, with emergence from late spring to midsummer.

HELICOPSYCHIDAE (1 genus, 1 species)

Larvae are found attached to rocks in a variety of clean streams where the current is not too rapid. They also occur on rocks on the windswept shores of clean lakes. The only species is univoltine, with emergence during the summer. Larvae are scrapers, feeding on algae and diatoms.

LEPTOCERIDAE (7 genera, 47 species)

Larvae inhabit a variety of lakes and streams, where they may be found on rocks, in sand, or on vegetation. Although common, they never seem to become abundant. Larvae of Triaenodes may also occur in ponds. Larvae of Oecetus are carnivores, while larvae of the other genera are omnivores. All species are probably univoltine, with emergence in late spring or summer.

11a. Abdominal segments with conspicuous dorsal and ventral projections (Fig. 12)

Ithytrichia
11b. Abdominal segments without dorsal and ventral projections 12
12a. Meso- and metathoracic legs almost 3 times as long as prothoracic legs (Fig. 13) Oxyethira
12b. Meso- and metathoracic legs not more than $1 / 1 / 2$ times as long as prothoracic legs (Figs. 14, 15)
13a. Tarsal claws about same length as tarsi (Figs. 14, 15, 16); case purselike (Figs. 11c, d, e) 14
13b. Tarsal claws much shorter than tarsi (Fig. 17); case not purselike, more barrel-shaped (Figs. 11f, g, h) 17
14a. Tarsal claws with long, stout, inner tooth (Fig. 16); larvae robust; case purselike (Fig. 11c) Stactobiella
14b. Tarsal claws without stout inner tooth; case either purselike or cylindrical

15
15a. Metatibia twice as long as deep (Fig. 14) Agraylea
15b. Metatibia about as long as deep (Fig. 15) 16
16a. Metanotum with setae at antero-ventral angle (Fig. 18); abdominal terga often with inconspicuous, pale, rectangular sclerites

Hydroptila
16b. Metanotum with setae dorsad of antero-ventral angle (Fig. 19); abdominal terga with inconspicuous sclerotized mesal rings (Figs. 20)

Ochrotrichia
17a. Anal legs apparently combined with body mass (Fig. 21); eighth abdominal tergum with only one or two pairs of weak setae (Fig. 22)

Orthotrichia
17b. Anal legs distinctly projecting from body mass (Fig. 23); eighth abdominal tergum with many setae (Fig. 24) 18
18a. Thoracic terga clothed with long, slender, erect, inconspicuous setae (Fig. 25); case of sand grains and evenly tapered (Fig. 11g).

Neotrichia
18b. Thoracic terga clothed with shorter, stout, black setae, which are conspicuous (Fig. 26); case evenly tapered, semitranslucent, and with dorsal side fluted with raised ridges (Fig. 11h)

Mayatrichia
19a. Meso- and metanotum entirely membranous, or (in Oligostomis) with only weak sclerites on mesonotum at SA1 (for location of SA1 and other setal areas see Fig. 53) 20
19b. Meso- and often metanotum with some conspicuous sclerotized plates

38
20a. Abdominal segment 9 with dorsum entirely membranous; no portable cases .. 21
20b. Abdominal segment 9 bearing a sclerotized dorsal plate; with or without cases

30
21a. Protrochantin broad, hatchet-shaped (Fig. 27)
PSYCHOMYIIDAE 22
21b. Protrochantin pointed (Fig. 28) or undeveloped 23
22a. PSYCHOMYIIDAE - Anal claw with several long teeth ventrally (Fig. 29); mentum with a pair of high, quadrangular sclerites (Fig. 30)

Psychomyia
22b. Anal claw lacking ventral teeth (Fig. 31); mentum with a
pair of wide, short sclerites (Fig. 32)
Lype
23a. Protrochantin undeveloped; head without muscle scars; labrum membranous and T-shaped (Fig. 33)

PHILOPOTAMIDAE 24
23b. Protrochantin pointed (Fig. 28); head usually with muscle scars (Figs. 34, 42); labrum sclerotized and widest near base (Fig. 34)

26
24a. PHILOPOTAMIDAE - Apex of fronto-clypeus deeply emarginate, often with a large or pointed left lobe and a smaller right one (Fig. 33)
24b. Apex of fronto-clypeus at most slightly asymmetrical (Figs. 35, 36)

25

25a. Fronto-clypeus almost perfectly symmetrical, widened abruptly near anterior margin (Fig. 35) Wormaldia
25b. Fronto-clypeus slightly asymmetrical, anterior portion uniformly widened (Fig. 36)

Dolophilodes
26a. POLYCENTROPODIDAE - Tarsi broad and densely pilose (Fig. 37); mandibles short and triangular, each with a large, thick mesal brush (Fig. 38)

Phylocentropus
26b. Tarsi with little or no pile (Fig. 39); mandibles elongate (Fig. 40)
27a. Muscle scars of head darker than surroundings (Fig. 34); if muscle scars are indistinct, anal claw is obtusely bent (Fig. 41)

28
27b. Muscle scars of head paler than surroundings (Fig. 42); if muscle scars are indistinct, anal claw is acutely bent (Fig. 43)

29
28a. Basal segment of anal proleg with several setae (Fig. 44).
Polycentropus
28b. Basal segment of anal proleg without setae, except sometimes a few distally (Fig. 45)

Neureclipsis
29a. Anal claw without ventral teeth (Fig. 46) Cyrnellus
29b. Anal claw with well-developed ventral teeth (Fig. 43)
Nyctiophylax
30a. SA3 on meso- and metanotum consisting of a cluster of setae (Figs. 55, 57, 58, 59); head with conspicuous, longitudinal, dark stripes dorsally (Figs. 55, 57, 58, 59); case of vegetable matter is readily vacated . . PHRYGANEIDAE 34
30b. SA3 on meso- and metanotum consisting of a single seta (Figs. 51, 53, 54); no dark stripes on head
31a. Anal claw long, about as long as elongate sclerite on anal leg (Fig. 47); protrochantin conspicuous; no portable case

RHYACOPHILIDAE, Rhyacophila
31b. Anal claw small, much shorter than elongate sclerite on anal leg (Fig. 48); protrochantin difficult to distinguish; saddle-shaped or turtlelike case (Fig. 49)

GLOSSOSOMATIDAE 32
32a. GLOSSOSOMATIDAE - Anal claw divided into many teeth (Fig. 50); meso- and metanotum with only one dorsal pair of hairs in addition to those at SA3 (Fig. 51); less than 4mm long

Protoptila
32b. Anal claw with 1 large tooth, and 1 or 2 small ones (Fig. 52); mesonotum and usually metanotum with setae at both SA1 and SA2 (Figs. 53, 54)

33
33a. Pronotum notched only at extreme anterolateral angle, at which point the legs are attached (Fig. 53); setae only at SA2 and SA3 on abdominal terga Glossosoma
33b. Pronotum narrowed from middle to anterior margin; legs attached at middle (Fig. 54); several abdominal terga with setae at SA1, SA2, and SA3

Agapetus
34a. SA1 of mesonotum with brownish-yellow sclerites (Fig. 55); case a series of rings (Fig. 56a)

Oligostomis
34b. SA1 of mesonotum membranous 35
35a. Pronotum with a semicircular dark stripe behind anterior pale margin (Fig. 57); case a series of rings (Fig. 56a)

Ptilostomis
35b. Proncium either with diagonal dark stripes or a dark anterior margin (Figs. 58-60); case built as a single spiral (Fig. 56b)

36
36a. Meso- and metanotum with two irregular, longitudinal dark bands, separated by a pale area (Fig. 58); pronotum with
dark stripes converging posteriorly (Fig. 58) Banksiola 36. Meso- and metanotum with fairly uniform pigmentation. . 37

37a. Anterior margin of pronotum bordered with black, followed by a dark brown band of variable width (Fig. 59); a dark stripe on fronto-clypeus (Fig. 59); posteroventral surface of pro- and mesocoxae with numerous, distinct, projecting scales

Phryganea
37b. Pronotum either with diagonal dark stripes or a uniformly dark anterior margin (Fig. 60); fronto-clypeus with or without a dark stripe; scales on procoxae small but distinct, those on mesocoxae indistinct

Agrypnia
38a. Claws of metathoracic legs very small, those of meso- and prothoracic legs long (Fig. 61); case of sand with lateral flanges (Fig. 62) MOLANNIDAE, Molanna
38b. Claws of metathoracic legs as long as those of mesothoracic legs

39
39a. Mesonotum membranous, except for a pair of sclerotized, narrow, curved or angled bars (Fig. 63); cases ovate or convex (Fig. 65a)

LEPTOCERIDAE, Ceraclea
39b. Mesonotum without such a pair of sclerotized bars 40
40a. Antennae long, at least 8 times as long as wide, and arising near base of mandibles (Fig. 68) LEPTOCERIDAE 41
40b. Antennae very short, not more than 4 times as long as wide, often very inconspicuous and arising at various points (Figs. 84, 95, 96)

46
41a. LEPTOCERIDAE (in part) - Mesothoracic legs with claw stout and hook-shaped, tarsus bent (Fig. 64); case slender and transparent (Fig. 65b)

Leptocerus
41b. Mesothoracic legs with claw slender, slightly curved, tarsus straight (Fig. 66); case seldom transparent 42
42a. Mandibles long, sharp at apex, teeth considerably below apex (Fig. 67); maxillary palpi nearly as long as stipes (Fig. 68) Oecetis
42b. Mandibles shorter, blunt at apex, teeth near or at apex (Fig. 63); maxillary palpi usually short 43
43a. Anal segment developed into a pair of sclerotized, concave plates, with spinose dorsolateral and mesal carinae, and an overhanging ventral flap (Fig. 69); case slender .. Setodes
43b. Anal segments convex and without carinae between anal hooks
44a. Metatibiae with a fracture near middle which appears to divide tibiae into 2 segments (Figs. 70, 71) 45
44b. Metatibiae entirely sclerotized, without a fracture in middle (Fig. 66); case elongate, of various materials (Fig. 65c)

Nectopsyche
45a. Metatibiae with a regular fringe of long hair (Fig. 70); case elongate, made of spirally arranged bits of vegetation (Fig. 65d)

Triaenodes
45b. Metatibiae with only irregularly placed hairs (Fig. 71); case elongate, of sand, stones, or vegetation, often with pieces projecting beyond opening (Fig. 65e) Mystacides
46a. Anterolateral margins of pronotum produced into long, sharp, forward-projecting points (Figs. 72, 74, 75) 47
46b. Anterolateral margins of pronotum not produced into long points
47a. Mesonotum divided into 2 pairs of plates (Fig 72); plates of mesothorax with anterior margins formed into long projecting sclerites (Fig. 72); case tubular, of sand with pebbles along side (Fig. 73) GOERIDAE, Goera
47b. Mesonotal plate divided only by a mesal fracture line (Figs. 74, 75); case tubular, slightly curved, and of sand grains (Fig. 76)
48a. Protrochantin produced as a short, curved point; four weakly sclerotized plates on metanotum at SA1 and SA2 (Fig. 74); basal gill tufts with 5 or fewer gills; tibiae and tarsi tan; case readily crushed SERICOSTOMATIDAE, Agarodes
48b. Protrochantin not produced beyond edge of coxa; 3 sclerotized plates on metanotum, SA1 combined to form a thin plate, with separate plates at SA3 (Fig. 75); basal gill tufts of 10 or more fine gills; tibiae and tarsi black; case extremely hard

ODONTOCERIDAE, Psilotreta

49a. Pronotum divided by a sharp furrow across middle, the area in front of furrow depressed (Fig. 77); meso- and metathoracic legs about 3 times as long as prothoracic legs

BRACHYCENTRIDAE 50
49b. Pronotum with at most a shallow furrow (Fig. 84); mesoand metathoracic legs not more than twice as long as prothoracic legs 51
50a. BRACHYCENTRIDAE - Metacoxae with a ventral, semicircular lobe bearing a row of long setae (Fig. 78); mesonotum with 4 elongate sclerites; plates of metanotum heavily sclerotized (Fig. 79) Brachycentrus
50b. Metacoxae without a ventral lobe bearing setae (Fig. 80); mesonotum with 2 very wide scierites that may be longitudinally divided near lateral margins; plates of metanotum only lightly sclerotized (Fig. 81)

Micrasema
51a. Antennae very close to eyes (Fig. 82); no dorsal spacing tubercle on abdominal segment 1 ; case usually of bits of vegetable matter (Fig. 83)

LEPIDOSTOMATIDAE, Lepidostoma
51b. Antennae about mid-way between eye and base of mandible (Fig. 84); dorsal spacing tubercle usually prominent ... 52
52a. Spiral case of sand grains or tiny stones and resembling a snail shell (Fig. 85); larvae almost always remaining in case; metanotum with large sclerites that tend to coalesce (Fig. 86); lateral spacing tubercles with about 200 tiny, sclerotized, flat scales; anal claw with many teeth (Fig. 87) HELICOPSYCHIDAE, Helicopsyche
52b. Case not spiral-shaped; SA1, SA2, and SA3 of metanotum with small plates or setae (Figs. 89, 91)

LIMNEPHILIDAE 53
53a. LIMNEPHILIDAE - All gills single 54
53b. Most gills in clusters of 2 or more 59
54a. Femora, tibiae, and tarsi annulate with black (Fig. 88) Psychoglypha
54b. Legs lacking contrasting annuli . 55
55a. Anterior margin of mesonotum with a mesal rectangular emargination (Fig. 89); head elongated; case of sand grains and tiny stones (Fig. 90a)

Neophylax
55b. Mesonotum without a mesal emargination; head nearly ovoid 56
56a. Anterior metathoracic plates replaced by a transverse row of setae (Fig. 91); case cornucopia-shaped of sand grains, with larger grains laterally

Apatania
56b. Anterior metathoracic plates present 57

SPECIES MOST LIKELY TO BE FOUND IN WISCONSIN AND MOST RECENT KEY

PHILOPOTAMIDAE (Adult and larval key Ross 1944)
Chimarra - aterrima, feria, obscura, socia
Dolophilodes - distinctus
Wormaldia - moestus
PSYCHOMYIIDAE (both genera monotypic)
Lype - diversa
Psychomyia - flavida
POLYCENTROPODIDAE (Adult keys Ross 1944)
Cernotina* - spicata*
Cyrnellus - marginalis
Neureclipsis - bimaculatus, crepuscularis, validus
Nyctiophylax - affinis, banksi*, celta, moestus (Adult key Morse 1972)
Phylocentropus - placidus
Polycentropus - aureolus, centralis, cinereus, clinei*, confusus, crassicornis, flavus, glacialis, interruptus, melanae*, nascotius, pentus, remotus, sabulosus*, weedi (Descr. Blickle and Morse 1955)

57a. Head brown with inconspicuous muscle scars posteriorly (Fig. 84); case of small sand grains, slightly tapered and curved (Fig. 90b)

Pseudostenophylax
57b. Head pale with dark scars and blotches; cases usually of vegetable matter
58a. Abdominal segments $2-7$ with ventral rings (Fig. 92)
Hydatophylax
58b. Abdominal segments $3-7$ with ventral rings (Fig. 93)
Pycnopsyche
59a. Some gills in clusters of 4 or more 60
59b. No gills in clusters of more than 3 62
60a. Gills on basal segments arising in clusters of 10-15; case slightly curved and usually of wood fragments (Fig. 90d) Ironoquia
60b. Fewer gills in clusters on basal segments 61
61a. Gills on basal segments in clusters of $6-8$; case of sand grains (Fig. 90c)

Hesperophylax
61b. Some gills on basal segments in clusters of 4, never 6 , case of vegetable matter (Fig. 90f) Onocosmoecus
62a. Legs with contrasting black annuli, case of sticks
Glyphopsyche
62b. Legs not annulate
63
63a. Pronotum with numerous pale setae along anterior margin; setae on bulbous ventral portion of prolegs (Fig. 94); head almost uniformly brown with light muscle scars posteriorly; case of stones or sand (Fig. 90e)

Frenesia
63b. Pronotum lacking pale setae along anterior margin; no setae on prolegs

64
64a. Head yellow with a dark stripe centrally on the frontoclypeus and a dark U-shaped band on genae (Fig. 95); case of leaves or other vegetation

Nemotaulius
64b. Head marked either with spots and infuscations, or mostly darkened, or with a V-shaped dark band on genae; cases extremely variable

65
65a. Prosternal horn extending beyond apices of procoxae (Fig. 96); head pale with dark spots; case usually of vegetation placed transversely (Fig. 90g)

Platycentropus
65b. Prosternal horn at most reaching apices of procoxae; head marked variously, pale with dark spots in some species; cases variable in material and construction, some similar to Platycentropus

Limnephilus, Asynarchus, Arctopora, Anabolia
Cernotina, Fabria and Hagenella not keyed.

HYDROPSYCHIDAE (Adult keys Ross 1944, Denning 1943)
Arctopsyche* - ladogensis*
Cheumatopsyche - analis, aphanta, campyla, gracilis, minuscula, oxa, pasella, sordida, speciosa, wabasha (Adult key Miller 1965)
Diplectrona - modesta
Hydropsyche - aerata*, arinale, betteni, bidens, bitida, bronta, cheilonis, cuanis, dicantha, frisoni*, hageni, morosa, orris, phalerata, placoda, recurvata, riola, scalaris, separata*, simulans, slossonae, sparna, valanis*, vexa, walkeri (Larval key Ross 1944)
Macronema - zebratum
Parapsyche - apicalis
Potamyia - flava
RHYACOPHILIDAE (Adult key Schmid 1970, larval key Flint 1962)

Rhyacophila - acropedes, fuscula, manistee*, melita*, vibox
GLOSSOSOMATIDAE
Agapetus - hessi, rossi*
Glossosoma - intermedium, nigrior
Protoptila - erotica, lega, maculata, tenebrosa
(Adult key Ross 1944)

HYDROPTILIADE (Adult and larval keys Ross 1944)
Agraylea - costello*, multipunctata
Hydroptila - ajax, albicornis, amoena, armata, berneri, callia*, consimilis, grandiosa, hamata, jackmanni, perdita, salmo*, scolops, spatulata, strepha*, valhalla*, virgata*, waubesiana, wyomia
Ithytrichia - clavata
Leucotrichia - pictipes
Mayatrichia - ayama
Neotrichia-falca*, halia*, okopa*, vibrans*
Ochrotrichia - spinosa, tarsalis
Orthotrichia - americana, baldufi*, cristata
Oxyethira - araya*, berneri*, coercens*, forcipata, michiganensis*, obtatus*, pallida, rivicola*, serrata, sida*, zeronia*
Stactobiella - delira, palmata
BRACHYCENTRIDAE (Adult and larval keys Ross 1944)
Brachycentrus - americanus, fuliginosus*, incanus*, lateralis, numerosus, occidentalis
Micrasema - rusticum, wataga, +2 others (Adult keys Ross 1947, Ross and Unzicker 1965)
PHRYGANEIDAE (Adult keys Ross 1944, larval keys Wiggins 1960)

Agrypnia - colorata*, improba*, macdunnoughi*, straminea, vestita
Banksiola - crotchi, smithi (Adult key Wiggins 1956)
Fabria - complicata, inornata*
Hagenella - canadensis
Oliogostomis - ocelligera
Phryganea - cinerea, sayi
Ptilostomis - augustipennis*, ocellifera, postica*, semifasciata
GOERIDAE
Goera - stylata
LIMNEPHILIDAE (Adult keys Ross 1944, larval keys Flint 1960)
Anabolia - bimaculata, consocia, ozburni, sordida
Apatania - incerta, zonella
Arctopora - pulchella
Asynarchus - montanus
Frenesia - missa
Glyphopsyche - irrorata
Hesperophylax - designatus
Hydatophylax - argus

Ironoquia - lyrata, punctatissima

Leptophylax - gracills
Limnephilus - arcocurvus*, argenteus, canadensis, curtus*, externus, hyalinus, indivisus, infernalis, janus, moestus, ornatus, partitus*, parvulus, perpusillus, quaeris*, rhombicus, rossi*, secludens*, sericeus, submonilifer

Nemotaulius - hostilis

Neophylax - autumnus, concinnus, consimilis*, fuscus, oligius
Onocosmoecus - quadrinotatus
Platycentropus - amicus, indistinctus*, plectrus*, radiatus
Pseudostenophylax - uniformis
Psychoglypha - subborealis
Pycnopsyche - aglona, guttifer, lepida, limbata, scabripennis, subfasciata (Adult key Betten 1950)
LEPIDOSTOMATIDAE (Adult keys Ross 1946, Flint and Wiggins 1961)

Lepidostoma - americanum*, bryanti, costalis, griseum, sackeni, strophis*, togatum, unicolor*
SERICOSTOMATIDAE (monotypic)
Agarodes - distinctum
ODONTOCERIDAE (monotypic)
Psilotreta - indecisa
MOLANNIDAE (Adult keys Ross 1944, larval keys Sherberger and Wallace 1971)
Molanna - blenda, flavicornis, tryphena, uniophila
HELICOPSYCHIDAE (monotypic)
Helicopsyche - borealis
LEPTOCERIDAE (Adult and larval keys Ross 1944)
Ceraclea - alagmus, ancylus, angustus, annulicornis, arielles, cancellatus, dilutus, erraticus, flavus, mentieus, miscus, nephus*, pfadti*, punctatus, resurgens, saccus*, tarsipunctatus, transversus
Leptocerus - americanus
Mystacides - longicornis, sepulchralis
Nectopsyche - albida, candida, diarina*, exquisita, pavida
Oecetis - avara, cinerascens, immobilis, inconspicua, ochracea, osteni, persimilis
Setodes - guttatus*, incerta, oligia
Triaenodes - aba, baris, borealis*, dipsia*, flavescens*, frontalis, ignita, injusta, marginata, nox*, tarda

LITERATURE CITED

Betten, C. 1950. The genus Pycnopsyche (Trichoptera). Ann Entomol. Soc. Amer. 43: 508-522.
Blickle, R. L. and W. J. Morse. 1955. New and little known Polycentropus (Trichoptera). Bull. Brooklyn Entomol. Soc. 50: 9598.

Denning, D. G. 1943. The Hydropsychidae of Minnesota (Trichoptera). Entomol. Amer. 23: 101-171.
Flint, O. S. 1960. Taxonomy and biology of limnephilid larvae (Trichoptera), with special reference to species in eastern United States. Entomol. Amer. 40: 1-117.
Flint, O. S. 1962. Larvae of the caddisfly genus Rhyacophila in eastern North America (Trichoptera: Rhyacophilidae). Proc. U. S. Nat. Mus. 113: 465-493.

Flint, O. S. and G. B. Wiggins. 1961. Records and descriptions of North American species in the genus Lepidostoma with a revision of the vernalis group (Trichoptera: Lepidostomatidae). Can. Entomol. 93: 279-297.
Miller, R. R. 1965. The taxonomy and distribution of the genus Cheumatopsyche in the northeastern United States. Ph.D. Thesis, Penn. State Univ. 61 pp.
Morse, J. C. 1972. The genus Nyctiophylax in North America. J. Kansas Entomol. Soc. 45: 172-181.

Ross, H. H. 1944. The caddisflies or Trichoptera of Illinois. Bull. III. Natur. Hist. Surv. 23: 1-326.

Ross, H. H. 1946. A review of the Nearctic Lepidostomatidae (Trichoptera). Ann. Entomol. Soc. Amer. 39: 265-291.
Ross, H. H. 1947. Descriptions and records of North American Trichoptera with synoptic notes. Trans. Amer. Entomol. Soc. 73: 125-168.
Ross, H. H. and J. D. Unzicker. 1965. The Micrasema rusticum group of caddisflies (Brachycentridae, Trichoptera). Proc. Biol. Soc. Wash. 78: 251-257.
Schmid, F. 1970. Le genre Rhyacophila et la famille des Rhyacophilidae (Trichoptera). Mem. Soc. Entomol. Can. No. 66. 230 $\mathrm{pp}+$ figs.
Sherberger, F. F. and J. B. Wallace. 1971. Larvae of the southeastern species of Molanna. J. Kansas Entomol. Soc. 44: 217224.

Wiggins, G. B. 1956. A revision of the North American caddisfly genus Banksiola (Trichoptera: Phryganeidae). Contrib. Roy. Ont. Mus. 43: 1-12.
Wiggins, G. B. 1960. A preliminary systematic study of the North American larvae of the caddisfly family Phryganeidae (Trichoptera). Can. J. Zool. 38: 1153-1170.

Figures 1-26. - Trichoptera. 1. Dorsal view of head of Macronema showing arcuate carina (C). 2. Lateral view of prothorax of Cheumatopsyche showing protrochantin (T). 3. Lateral view of prothorax of Parapsyche showing protrochantin (T). 4. Prosternum of Hydropsyche. 5. Prosternum of Cheumatopsyche. 6. Ventral view of head of Parapsyche. 7. Ventral view of head of Arctopsyche. 8. Ventral view of head of Potamyia. 9. Ventral view of head of Diplectrona. 10. Dorsal view of Leucotrichia. 11. Cases of Hydroptilidae; a. Leucotrichia, b. Oxyethira, c. Stactobiella, d. Hydroptila, e. Ochrotrichia, f. Orthotrichia, g. Neotrichia, h. Mayatrichia. 12. Lateral view of ithytrichia. 13. Oxyethira: a. mesothoracic leg, b. prothoracic leg. 14. Agraylea: a. meta-
thoracic leg, b. prothoracic leg. 15. Hydroptila: a. metathoracic leg, b. prothoracic leg. 16. Metatibia and tarsus of Stactobiella. 17. Metathoracic leg of Orthotrichia. 18. Lateral view of metanotum of Hydroptila. 19. Lateral view of metanotum of Ochrotrichia. 20. Dorsal view of abdominal segment 3 of Ochrotrichia. 21. Lateral view of abdominal segments 8-10 of Orthotrichia. 22. Dorsal view of abdominal segments 8-9 of Orthotrichia. 23. Lateral view of abdominal segments $7-10$ of Neotrichia. 24. Dorsal view of abdominal segments 7-9 of Neotrichia. 25. Dorsal view of thorax of Neotrichia. 26. Dorsal view of thorax of Mayatrichia.

Figures 27-56. - Trichoptera. 27. Lateral view of prothorax of Psychomyia showing protrochantin (T). 28. Lateral view of prothorax of Polycentropus showing protrochantin (T). 29. Anal claw of Psychomyia. 30. Genae and mentum of Psychomyia. 31. Anal claw of Lype. 32. Genae and mentum of Lype. 33. Dorsal view of head of Chimarra showing labrum (L). 34. Dorsal view of head of Polycentropus. 35. Dorsal view of head of Wormaldia (mouthparts omitted). 36. Dorsal view of head of Dolophilodes (mouthparts omitted). 37. Tarsus of Phylocentropus. 38. Dorsal view of left mandible of Phylocentropus. 39. Tarsus of Polycentropus. 40. Dorsal view of left mandible of Polycentropus. 41. Anal claw of

Polycentropus. 42. Dorsal view of head of Nyctiophylax. 43. Anal claw of Nyctiophylax. 44. Anal proleg of Polycentropus. 45. Anal proleg of Neureclipsis. 46. Anal claw of Cyrnellus. 47. Anal proleg of Rhyacophila. 48. Anal proleg of Glossosoma. 49. Ventrolateral view of case of Glossosoma. 50. Anal claw of Protoptila. 51. Dorsal view of thorax of Protoptila. 52. Anal claw of Glossosoma. 53. Dorsal view of thorax of Glossosoma showing setal areas (SA1, SA2, SA3). 54. Dorsal view of thorax of Agapetus. 55. Dorsal view of head and thorax of Oligostomis. 56. Cases of Phryganeidae (separated to show construction): a. Ptilostomis, b. Phryganea.

Figures 57-75. - Trichoptera. 57. Dorsal view of head and thorax of Ptilostomis. 58. Dorsal view of head and thorax of Banksiola. 59. Dorsal view of head and thorax of Phryganea. 60. Pronota of 2 species of Agrypnia. 61. Molanna: a. metathoracic leg, b. mesothoracic leg, c. prothoracic leg. 62. Case of Molanna. 63. Dorsal view of head and thorax of Ceraclea. 64. Tibia and tarsus of Leptocerus: a. metathoracic leg, b. prothoracic leg. 65. Cases of Leptoceridae: a. Ceraclea, b. Leptocerus, c. Nectopsyche, d. Triaenodes, e. Mystacides. 66. Femur, tibia, and tarsus
of Nectopsyche: a. metathoracic leg, b. mesothoracic leg. 67. Dorsal view of head of Oecetis. 68. Lateral view of head of Oecetis showing antenna (A). 69. Posterior view of anal segment and prolegs of Setodes. 70. Metathoracic leg of Triaenodes showing fracture (F). 71. Metathoracic leg of Mystacides showing fracture (F). 72. Dorsal view of thorax of Goera. 73. Case of Goera. 74. Dorsal view of thorax of Agarodes. 75. Dorsal view of thorax of Psilotreta.

Figures 76-96. - Trichoptera. 76. Case of Psilotreta. 77. Lateral view of pronotum and head of Brachycentrus. 78. Metathoracic leg of Brachycentrus. 79. Dorsal view of thorax of Brachycentrus. 80. Metathoracic leg of Micrasema. 81. Dorsal view of thorax of Micrasema. 82. Dorsal view of head of Lepidostoma showing location of antennae (A). 83. Case of Lepidostoma. 84. Lateral view of head and pronotum of Pseudostenophylax. 85. Case of Hellcopsyche. 86. Dorsal view of thorax of Helicopsyche. 87. Anal claw of Helicopsyche. 88. Mesofemur, tibia, and tarsus of Psychoglypha. 89. Dorsal view of thorax of Neo-
phylax. 90. Cases of Limnephilidae: a. Neophylax, b. Pseudostenophylax, c. Hesperophylax, d. Ironoquia, e. Frenesia, f. Onocosmoecus, g. Platycentropus. 91. Dorsal view of thorax of Apatania (after Flint 1960). 92. Ventral view of abdomen of Hydatophylax. 93 . Ventral view of abdomen of Pycnopsyche. 94. Ventral view of abdominal segments 9-10 of Frenesia. 95. Dorsal view of head of Nemotaulius. 96. Lateral view of prothorax and head of Platycentropus showing prosternal horn (H) in relation to coxae (C).

This small holometabolous order has just two families. Only the larvae are aquatic, and they occur commonly in a variety of lotic and lentic habitats. There are normally 10 larval instars, and life cycles of most species are 2 or 3 years in Wisconsin, with emergence in late spring or early summer. Larvae of all species are carnivores; nothing is known about feeding habits of the short-lived adults.
CORYDALIDAE - Fishflies and Dobsonflies (3 genera, 5 species)
Species in this order are among our largest insects. Nigronia and Corydalus larvae are found statewide under rocks in well aerated streams of all sizes, with Nigronia often being abundant. Chauliodes larvae are most frequently encountered in weedy ponds, but also occur in marshes, lake margins, and even in streams.
SIALIDAE - Alderflies (1 genus, 11 species)
Larvae of Sialis occur in both lotic and lentic habitats, usually burrowing in deposits of silt. They are common in littoral zones of some lakes, and may be encountered occasionally a mile or more from shore.

KEY to genera of megaloptera
 LARVAE IN WISCONSIN

1a. Last abdominal segment with a tong median filament
SIALIDAE, Sialis
1b. Last abdominal segment without a median filament, but with a pair of lateral hooks
. CORYDALIDAE 2
2a. A large tuft of filamentous gills at the base of each lateral process

Corydalus
2b. No filamentous gills at the base of each lateral process .. 3

3a. Dorsal respiratory tubes on abdominal segment 8 short, not reaching past middle of abdominal segment 9 Nigronla
3b. Dorsal respiratory tubes on abdominal segment 8 long, reaching past end of abdomen

Chauliodes

SPECIES LIKELY TO BE FOUND IN WISCONSIN AND MOST RECENT KEY TO SPECIES

CORYDALIDAE (Adult key Davis 1903)
Chauliodes - pectinicornis, rastricornis (Larval key Cuyler 1958)

Corydalus - cornutus
Nigronia — fasciatus*, serricornis (Larval key Neunzig 1966)
SIALIDAE (Adult key Ross 1937, descr. Flint 1964)
Sialis - americana, contigua*, dreisbachi*, glabella*, hasta*, infumata, itasca, joppa, mohri, vagans, velata

LItERATURE CITED

Cuyler, R. D. 1958. The larvae of Chaullodes Latreille (Megaloptera: Corydalidae). Ann. Entomol. Soc. Amer. 51: 582-586.
Davis, K. C. 1903. Sialididae of North and South America, in Aquatic insects in New York State. N. Y. Mus. Bull. 68: 442486.

Flint, O. S. 1964. New species and new state records of Sialis (Neuroptera: Sialidae). Entomol. News 75: 9-13.
Neunzig, H. H. 1966. Larvae of the genus Nigronia Banks. Proc. Entomol. Soc. Wash. 68: 11-16.
Ross, H. H. 1937. Studies of Nearctic aquatic insects. I. Nearctic alder flies of the genus Sialis (Megaloptera, Sialidae). Bull. III. Natur. Hist. Surv. 21: 57-78.

AQUATIC NEUROPTERA (Spongilla Flies)

In this relatively large holometabolous order there is one family, Sisyridae, that has become adapted to an aquatic environment. Larvae of this family are parasitic on certain freshwater sponges, mostly in the genus Spongilla or Ephydatia. Larvae hatch from eggs laid above the water, drop into the water, and then drift or swim until they find a suitable host where they can complete their development. The third instar larva crawls from the water to pupate. Larvae of Sisyra and Climacia may be found in both lentic and lotic situations, anyplace where the host species of sponge is found.

KEY TO GENERA OF AQUATIC NEUROPTERA LARVAE IN WISCONSIN

1a. Dorsal tubercles pronounced, with 2 or 3 minute spines at bases of setae . Climacia
1b. Dorsal tubercles short, without minute spines at bases of setae

Sisyra

In this very large terrestrial order, larvae and pupae of a few species in the family Pyralidae have become adapted to the aquatic environment. Larvae of Neocataclysta, Nymphula, and Paraponyx construct cases of plant materials and live in lentic environments where they feed on plants. Parargyractis larvae are lotic and feed on diatoms and algae growing on rocks. Although fairly common in some areas, aquatic Lepidoptera have not been studied in Wisconsin and very little is known about them. Larvae of additional species of Lepidoptera that live on emergent vegetation or bore into stems of aquatic plants may be collected while sampling aquatic habitats.

key to genera of aquatic lepidoptera LARVAE IN WISCONSIN

1a. Filamentous gills present 2
1b. Filamentous gills absent 3
2a. Gills branched, with up to 400 gill filaments; larvae in a case of material cut from the food plant (Nuphar, Potamogeton, Vallisneria, etc.)

Paraponyx
2b. Gills unbranched, with about 120 gill filaments; larvae freeliving on rocks in lotic situations Parargyractis
3a. Larva in a case constructed from its food plant 4
3b. Larva free-living, without a case terrestrial
4a. Body cylindrical, moniliform; head paler than body; case of Lemna on which it feeds Neocataclysta
4b. Body somewhat flattened, not moniliform; head darker than body; on Lemna, Potamogeton, Nuphar, or other plants from which case is built

Nymphula

AQUATIC COLEOPTERA (Beetles)

In this, the largest insect order, only about 10% of the families have a majority of species with an aquatic stage. A few additional families have a limited number of aquatic species. About 1% of the known species of Coleoptera have an aquatic stage; and more than 300 aquatic species occur statewide. In Wisconsin there are six families in which most adults and larvae are aquatic (Dytiscidae, Elmidae, Gyrinidae, Haliplidae, Hydrophilidae, and Noteridae), two families in which adults are aquatic (Dryopidae, Hydraenidae), two families with aquatic larvae (Helodidae and Psephenidae), and one more family with a few species of aquatic larvae (Chrysomelidae). Pupae are terrestrial or live in air-filled cacoons. Life cycles, habitat, feeding habits, and distribution vary widely from family to family. Species keys can be used to accurately identify adults in most genera, but larvae cannot be identified to species and sometimes not even to genus.
HALIPLIDAE - Crawling Water Beetles (3 genera, 24 species)
Adults and larvae of Haliplus and Peltodytes are found among matted vegetation and debris along the shores of lakes, ponds, and slow streams, and are often abundant. Eggs are laid in the spring, larvae complete three instars on vegetation where they feed mostly on algae, and then pupate on shore under a stone or log. The aquatic adults, which emerge in summer or fall, are also mostly herbivorous.

DYTISCIDAE - Predaceous Water Beetles (27 genera, 140 species)
Both larvae and adults are predators, mainly on other arthropods. Larvae of most species complete their development in the spring, pupate on dry land in the summer, emerge in late summer or fall, and overwinter as adults. A few species overwinter as larvae, and in dry years, many may overwinter as pupae. Larvae and adults of most species can be collected in a variety of shallow, debris-laden, or vegetation-choked habitats. Ponds, small puddles, marshes, swamps, lake margins, and streams all harbor species, some of which may become abundant. Except for some lotic Agabus, most species are lentic and not very habitat specific. Adults often fly, especially just after emergence, and can be frequently collected at lights.

NOTERIDAE - Burrowing Water Beetles (3 genera, 3 species)
Although adults resemble small dytiscids in structure and habits, larvae are very different. The herbivorous larvae feed on plant roots and pupate within an air-filled cacoon on these roots in late summer. Adults emerge in fall and overwinter. Suphisellus is rare in southern Wisconsin; the other two genera have not been found, but occur in Michigan.

GYRINIDAE — Whirligig Beetles (2 genera, 26 species)
Both genera are common inhabitants of Wisconsin's ponds,
lakes, and streams. Larvae complete 3 instars during the summer months and pupate on shore. Adults emerge in late summer and fall, often congregating in large schools of mixed species. Species that inhabit ponds fly to wintering sites along large streams and lakes in the fall. Larvae are predaceous; adults are scavengers.

HYDROPHILIDAE - Water Scavenger Beetles (17 genera,

67 species)

Some genera (subfamily Sphaeridiinae) are not aquatic, and others represent a transition between aquatic and terrestrial environments, living largely at the water-land interface. Chaetarthria is mostly riparian, and the larvae of Anacaena, Paracymus, Laccobius, and Crenitis are also riparian, with the adults of these genera having some affinity for the terrestrial environment. The rest of the genera are widespread and often abundant in a variety of aquatic habitats. Sperchopsis, Crenitis, and Hydrobius inhabit lotic situations, although the latter may also occur in ponds. The remaining genera are primarily lentic, preferring weedy ponds, marshes, swamps, and lake margins, but also occurring along the margins of streams. The larvae have 3 instars and are predators, while the adults are scavengers and feed on a variety of food. All species are probably univoltine, with larvae most numerous in spring and early summer, and adults most abundant in late summer and fall. Most species probably overwinter as adults, but in some years pupae of some species may also overwinter.
HYDRAENIDAE - Minute Moss Beetles (2 genera, 5 species)
Only the adults are aquatic, and in Wisconsin they are rarely collected, perhaps because of their small size. A third genus, Limnebius, may also occur; adults are only 1 mm long and could be easily overlooked. The beetles are scavengers, and feed on dead animals and plant material in swamps and margins of streams.
PSEPHENIDAE - Water Penny Beetles (2 genera, 2 species)
Only the larvae are aquatic, attaching to rocks in streams or windswept lake shores where they scrape algae and diatoms
from rocks. There are apparently 6 larval instars and a 2-year life cycle. Pupation occurs in summer on moist rocks near the stream and adults emerge in less than 2 weeks. Adults are riparian, but enter the water to oviposit. Both species are fairly common throughout the state, but habitat requirements are specific and in a given stream Psephenus larvae can be abundant or absent.

ELMIDAE — Riffle Beetles (6 genera, 26 species)
Larvae and adults of all Wisconsin genera are aquatic. They are common in waterlogged wood (Macronychus, Ancyronyx, Stenelmis, Dubiraphia), in gravel substrate of streams (Stenelmis, Optioservus), among stream vegetation (Dubiraphia) and occasionally occur along margins of clean lakes (Macronychus, Stenelmis, Dubiraphia). Microcylloepus is rare. The herbivorous larvae have 5 or 6 instars, and most species probably require 2 years to complete their development. Adults are also herbivores. Upon emergence from the terrestrial pupal chamber, they fly and disperse widely, but after entering the water they rarely if ever leave the aquatic environment.
DRYOPIDAE — Riffle Beetles (1 genus, 2 species)
The environment and habits of Helichus adults are very similar to those of elmids, but the larvae are not aquatic. Although both species are distributed statewide, they are most common in the southwestern part of the state.

HELODIDAE - Marsh Beetles (4 genera, 22 species)

The herbivorous larvae can be frequently found in a variety of shallow lentic habitats, including tree holes. Almost nothing is known about their life cycle or biology.

CHRYSOMELIDAE (1 genus)

Larvae and pupae of Donacia inhabit and feed upon the roots and submerged stems of aquatic plants, especially water lillies. Oxygen is obtained from the plant. Although Chrysomelidae is a very large terrestrial family, larvae of this aquatic genus are apparently uncommon.

6a. Antennae short, club-shaped with segment 4,5 , or 6 modified to form a cupule (Fig. 7); maxillary palpi usually longer than antennae
6b. Antennae filiform or pectinate, usually longer than maxillary palpi
7a. Antennae with 5 segments past cupule; less than 2.5 mm long . HYDRAENIDAE 39
7b. Antennae with 3 segments past cupule; $1.5-40 \mathrm{~mm}$ long HYDROPHILIDAE 40
8a. Antennae slender, filiform; less than 4.5 mm long ELMIDAE 57
8b. Antennae short with pectinate club (Fig. 8); 5.0-6.3mm long DRYOPIDAE, Helichus
9a. GYRINIDAE - Scutellum visible; elytra with distinct rows of

9b. Scutellum not visible; elytral punctures scattered and indistinct; $9-16 \mathrm{~mm}$ Dineutus
10a. HALIPLIDAE - Pronotum with sides widest at base, convergent anteriorly (Fig. 9)

10b. Pronotum with sides of basal $2 / 3$ nearly parallel (Fig. 10); $4.0-4.5 \mathrm{~mm}$

Brychius
11a. Last segment of maxillary palpi conical, as wide and as long or longer than next to last (Fig. 11); 3.5-5.0mm .

Peltodytes
11b. Last palpal segment narrower and much shorter than next to last (Fig. 12)

Haliplus
12a. NOTERIDAE - Prosternal process rounded posteriorly; 2.53.0 mm

Pronoterus
12b. Prosternal process truncate posteriorly 13
13a. Length $2.7-3.0 \mathrm{~mm}$
Suphisellus
13b. Length $3.7-4.5 \mathrm{~mm}$
Hydrocanthus

14a. DYTISCIDAE (in part) - Scutellum fully visible; apices of elytra and last abdominal sternum produced, acuminate; 4 mm

Celina
14b. Scutellum covered by elytra; apex of abdomen not acuminate

15
15a. Less than 2.2 mm long; metacoxal process not produced laterally, bases of trochanters entirely free (Fig. 13) . . . 16
15b. More than 2.3 mm long; metacoxal process produced laterally to cover bases of trochanters (Figs. 14, 22-25) . .. 19
16a. Metatibiae straight, almost uniform in width (Fig. 15); metatarsal claws unequal; 1.8 mm

Desmopachria
16b. Metatibiae arcuate, narrow at base (Fig. 16); metatarsal claws equal in length 17
17a. Pro- and mesotarsi distinctly 5 -segmented; metacoxal lines strongly impressed and converging anteriorly across midmetasternum to meet at mesocoxae (Fig. 17); 1.7-2.2mm .

Bidessonotus
17b. Pro- and mesotarsi apparently 4 -segmented; metacoxal lines not continuing onto mid-metasternum 18
18a. Head with transverse suture behind eyes (Fig. 18); 1.82.2 mm Liodessus
18b. Head without a transverse suture behind eyes; $1.6-2.0 \mathrm{~mm}$. .
19a. A diagonal carina crossing epipleura near base (Fig. 19) 20
19b. No carina crossing epipleura . 21
20a. Prosternal process broadly rounded at tip, and as wide as procoxae (Fig. 20); $2.4-2.6 \mathrm{~mm}$ Hydrovatus
20b. Prosternal process pointed at tip, and only half as wide as procoxae (Fig. 21); 2.3-5.4mm Hygrotus
21a. Bases of metafemora touching metacoxal lobes (Fig. 22); $4.5-5.0 \mathrm{~mm}$

Laccornis
21b. Metafemora separated from metacoxal lobes by basal part of trochanters

22
22a. Posterior margin of metacoxal process truncate or angularly prominent at middle (Figs. 23, 24); 2.5-6.0mm Hydroporus
22b. Posterior margin of metacoxal process incised at middle (Fig. 25)

23
23a. Metacoxal plates micropunctate with scattered larger punctures; pronotum with distinct sulcations laterally; $3.4-4.4 \mathrm{~mm}$ Oreodytes
23b. Metacoxal plates densely micropunctate, without larger punctures; pronotum without lateral sulci; $4.3-5.0 \mathrm{~mm}$

Deronectes
24a. DYTISCIDAE (in part) - Very large, 25-40mm 25
24b. Smaller, 4-17mm . 26
25a. One large spur at apex of metatibiae twice as broad as other; beetle widest at posterior third; $28-33 \mathrm{~mm}$. Cybister
25b. Large spurs at apex of metatibiae subequal in width; beetle widest near middle; $25-40 \mathrm{~mm}$. Dytiscus
26a. Scutellum not visible; metatarsi with a single stout claw; 4.0-6.0mm . Laccophilus

26b. Scutellum fully visible; metatarsi with two claws 27
27a. Anterior margin of eyes emarginate above bases of antennae (Fig. 26) .

28
27b. Eyes not emarginate above bases of antennae 36
28a. Metafemora with a linear group of stout setae ventrally near posterior, apical angle (Fig. 27) 29
28b. Metafemora without such setae 30
29a. Metatarsal claws of equal length or nearly so; $6.0-11.0 \mathrm{~mm}$.

29b. Outer metatarsal claw $2 / 3$ or less length of inner claw; 8.011.5 mm

Ilybius
30a. Prosternum with a median longitudinal furrow from near front margin to apex of prosternal process; 8.5-9.0mm :...

Matus
30b. Prosternum without a longitudinal furrow 31
31a. Metacoxal lines coming so close together posteriorly as almost to touch median line (Fig. 28); 4.5-5.5mm Copelatus
31b. Metacoxal lines not converging so close to median line (Fig. 2)
32a. Metatarsal claws of same length, or nearly so; less than 9 mm long

32b. Metatarsal claws obviously unequal in length; more than 9 mm long

33a. Terminal palpal segments notched or emarginate at apex; $7.5-8.5 \mathrm{~mm}$. Coptotomus
33b. Terminal palpal segments not emarginate; $6.0-7.0 \mathrm{~mm}$

Agabetes

34a. Elytra sculptured with numerous parallel transverse grooves; $15-17 \mathrm{~mm}$

Colymbetes
34b. Elytra without transverse grooves 35
35a. Large black beetles with coarsely reticulate elytra; $14-16 \mathrm{~mm}$

Neoscutopterus

35b. Smaller beetles, with elytra not reticulate and usually irrorate; $9-11 \mathrm{~mm}$ Rhantus
36a. Outer margin of metasternal wings straight (Fig. 29); outer spur at apex of metatibiae acute; $12-14 \mathrm{~mm} . .$. . Hydaticus
36b. Outer margin of metasternal wings arcuate (Fig. 30); outer spur at apex of metatibiae blunt, more or less emarginate.

37a. Elytra densely punctate, and usually fluted and hairy in females; 12-16mm Acilius
37b. Elytral punctation extremely fine or absent; females without fluted elytra 38
38a. Hind margin of mesofemora with stiff setae that are as long as or longer than femora are wide (Fig. 31); 9-13mm

Thermonectus
38b. Setae on hind margin of mesofemora only about half as long as femora are wide (Fig. 32); 11-16mm. . Graphoderus
39a. HYDRAENIDAE - Maxillary palpi much longer than antennae; pronotum coarsely, closely punctate, sides without a transparent border; $1.8-2.2 \mathrm{~mm}$

Hydraena
39b. Maxillary palpi shorter than antennae; pronotum variously sculptured, almost always with a transparent border in at least basal half; $1.2-2.5 \mathrm{~mm}$

Ochthebius
40a. HYDROPHILIDAE - Pronotum with 5 longitudinal grooves; $2.8-4.5 \mathrm{~mm}$

Helophorus
40b. Pronotum without longitudinal grooves 41
41a. Pronotum granular and conspicuously narrower than elytral bases; scutellum very small; eyes protuberant; 3.5-4.0mm. .

Hydrochus
41b. Pronotum not appreciably narrower than base of elytra, or if so, scutellum elongate

42
42a. Basal segment of metatarsi longer than second; antennae usually longer than maxillary palpi; segment 2 of maxillary palpi much thicker than 3 or 4 . . Sphaeridiinae (terrestrial)
42b. Basal segment of metatarsi shorter than second; antennae subequal to or shorter than maxillary palpi; segment 2 of maxillary palpi not, or very little thicker than 3 or $4 \ldots 43$
43a. Meso- and metasternum with a continuous median longitudinal keel, which is prolonged posteriorly into a spine between hind coxae (Fig. 3) 44
43b. Meso- and metasternum without a continuous median longitudinal keel 47
44a. Length 8-16mm . 45
44b. Length $31-37 \mathrm{~mm}$. 46
45a. Prosternum sulcate to receive anterior part of keel; 8-11mm
Tropisternus
45b. Prosternum carinate; $13-16 \mathrm{~mm}$
Hydrochara
46a. Prosternum sulcate, closed anteriorly; 32-37mm Hydrophilus
46b. Prosternum bifurcate, open anteriorly; $31-33 \mathrm{~mm}$ Dibolocelus
47a. First 2 abdominal sternites with a common excavation covered by a fringe of long golden hairs arising from anterior margin of first abdominal sternite; 2 mm (semiaquatic) Chaetarthria
47b. Basal abdominal sternites normal 48
48a. Meso- and metatibiae with fringes of long swimming hairs; head strongly deflexed; scutellum elongate; $2.5-6.0 \mathrm{~mm}$.

Berosus

48b. Meso- and metatibiae not fringed with swimming hairs; head not deflexed; scutellum almost as wide as long .. 49

49a. Maxillary palpi stout and short, about same length as antennae; last segment of palpi as long or longer than next to last
49b. Maxillary palpi slender, much longer than antennae; last palpal segment usually shorter than next to last 55
50a. Length 6-10mm . 51
50b. Length $2-4 \mathrm{~mm}$. 52
51a. Lateral margins of elytra weakly serrate basally (Fig. 33); meso- and metatarsi with scattered fine hairs dorsally; 89 mm

Sperchopsis
51b. Lateral margins of elytra without serrations; meso- and metatarsi with a dorsal fringe of fine swimming hairs; 610 mm

Hydrobius
52a. Metatibiae arcuate (Fig. 34); elytra without sutural striae; $2.5-4.0 \mathrm{~mm}$

Laccobius
52b. Metatibiae not arcuate (Fig. 35); elytra with sutural striae (Fig. 36)
53a. Prosternum longitudinally carinate; mesosternum with a strong transverse ridge; black or nearly black with a metalic sheen; $2.0-2.5 \mathrm{~mm}$

Paracymus
53b. Prosternum not carinate; mesosternum with toothlike protuberance, low transverse ridge, or smooth; dark brown to nearly black
54a. Mesosternum with a toothlike protuberance Anacaena
54b. Mesosternum with a low transverse ridge, or smooth
Crenitis
55a. All tarsi 5 -segmented, basal segment small; $2.5-9.5 \mathrm{~mm}$
Enochrus
55b. Meso- and metatarsi 4 -segmented 56
56a. Mesosternum with a transverse carina; only sutural striae of elytra impressed; $3.0-6.0 \mathrm{~mm}$

Cymbiodyta
56b. Mesosternum with a prominent conical process; elytra with many impressed striae; $6.0-8.0 \mathrm{~mm}$

Helocombus
57a. ELMIDAE - Legs very long (Fig. 37), mesofemora as long or longer than basal width of elytra; elytra never with longitudinal testaceous vittae

58
57b. Legs of normal size (Figs. 38-40), mesofemora less than 3/4 basal width of elytra; elytra often with longitudinal testaceous vittae

59
58a. Unicolorous dark brown; $2.7-3.7 \mathrm{~mm}$. Macronychus
58b. Elytra with conspicuous orange markings (Fig. 37); 2.73.5 mm

Ancyronyx
59a. Dorsal surface of pronotum smooth, except for punctures; lateral margin of pronotum smooth (Fig. 38); elongate beetles (Fig. 38); $2.0-3.5 \mathrm{~mm}$

Dubiraphia
59b. Dorsal surface of pronotum with basal carinae (Fig. 39) or scattered bumps, sulci, and carinae (Fig. 40); lateral margin of pronotum at least weakly serrated (Figs. 39, 40) 60
60a. Surface of pronotum smooth, except for punctures and basal carinae (Fig. 39); 1.7-3.5mm

Optioservus
60b. Surface of pronotum rough, with bumps, sulci, and carinae (Fig. 40)

61
61a. Large, more than 2.5 mm ; tomentum absent; $2.7-4.2 \mathrm{~mm} . .$. Stenelmis
61b. Small, less than 2.5 mm ; tomentum present (Fig. 41); 1.72.2 mm

Microcylloepus

KEY TO GENERA OF AQUATIC COLEOPTERA IN WISCONSIN (LARVAE)

1a. Each tarsus with 2 claws; legs 5 -segmented 2
1b. Each tarsus with 1 claw; legs apparently 4 -segmented (except Haliplidae)
2a. Abdomen with 4 conspicuous hooks on last segment; abdominal segments with at least 8 pairs of lateral filaments (Fig. 1)

GYRINIDAE 9
2b. No hooks on last abdominal segment; if lateral abdominal filaments are present, there are only 6 pairs

3a. Posterior half of abdomen conspicuously narrowed (Fig. 2); legs and cerci often elongate DYTISCIDAE 13
3b. Posterior half of abdomen little narrowed (Fig. 3); legs and cerci short NOTERIDAE 12
4a. Legs distinctly 5 -segmented; abdomen terminating in 1 or 2 long filaments (Fig. 4)

HALIPLIDAE 10
4b. Legs apparently 4-segmented; abdomen not terminating in long filaments
5a. Mandibles large, readily visible from above (Fig. 5)
HYDROPHILIDAE 34
5b. Mandibles not readily visible from above
6
6a. Antennae long, filiform, as long as head and thorax combined (Fig. 6)

HELODIDAE 43
6b. Antennae much shorter than head and thorax combined 7
7a. Body oval and extremely flat (Fig. 7); head completely concealed from dorsal view

PSEPHENIDAE 46
7b. Body elongate, round, or triangular in cross section; head exposed
Ba. Body elongate and sclerotized with a ventral mova operculum closing a caudal chamber containing gills (Fig. 8)

ELMIDAE 47
8b. All terga rounded and pale; grub-like larvae with 2 spines on last abdominal segment (Fig. 9)

CHRYSOMELIDAE, Donacia
9a. GYRINIDAE - Head narrowed posteriorly to form a distinct collar (Fig. 10)

Dineutus
9b. Elongate head not narrowed posteriorly to form a collar (Fig. 11)

Gyrinus
10a. HALIPLIDAE - Each body segment with 2 or more long, spinelike filaments, each half as long as body.. Peltodytes
10b. Spines on body segments less than length of a segment 11
11a. Third antennal segment $2-3$ times as long as second
Haliplus
11b. Third antennal segment shorter than second Brychius
12a. NOTERIDAE - Mandibles stout, bifid at tip; third antennal segment no longer than fourth

Suphisellus
12b. Mandibles slender, not bifid at tip; third antennal segment at least twice as long as fourth

Hydrocanthus
13a. DYTISCIDAE - Lateral gills on abdominal segments 1 to 6
Coptotomus
13b. No lateral gills on abdominal segments 14
14a. Head with a frontal projection (Fig. 12) 15
14b. Head without a frontal projection 20
15a. Cerci with secondary hairs (Fig. 13) Deronectes, Oreodytes
15b. Cerci with only primary hairs (Fig. 14) 16
16a. Cerci short, less than length of last abdominal segment 17
16b. Cerci distinctly longer than last abdominal segment ... 18
17a. Cerci very short, about $1 / 4$ length of last abdominal segment

Laccornis
17b. Cerci nearly as long as last abdominal segment; recurved trachael trunks projecting past last segment (Fig. 15) Celina
18a. Frontal projection notched laterally (Figs. 16, 17)
Hygrotus, Hydroporus
18b. Frontal projection without lateral notches (Fig. 12) 19
19a. Larva greatly widened in middle (Fig. 12) Hydrovatus
19b. Larva not greatly widened in middle; not more than 2.5 mm long

Bidessonotus, Liodessus, Uvarus
20a. Abdominal segments 7 and 8 with a lateral fringe of long swimming hairs . 29
20b. Abdominal segments 7 and 8 without a lateral fringe of long swimming hairs . 21
21a. Cerci extremely short, ventral, difficult to see (Fig. 18) Agabetes
21b. Cerci at least $1 / 4$ length of last abdominal segment ... 22
22a. Pro- and mesothoracic legs chelate, with inner apex of tibiae formed into a long serrated process parallel to and as long as tarsi (Fig. 19) Matus
22b. Legs not chelate . 23
23a. Cerci with only primary hairs, usually 7 in 2 whorls (Fig. 14)
. 24
23b. Cerci with numerous secondary hairs (Figs. 13, 25) 26

24a. Fourth antennal segment double, one half very short (Fig. 20); mandibles with an area of serrations on inner edge (Fig. 21)

Copelatus
24b. Fourth antennal segment single; mandibles without serrations 25
25a. Lateral margin of head more or less compressed or keeled; spines on posterolateral margins of head usually on a line that would intersect or pass just below ocelli (Fig. 22) ..
llybius
25b. Lateral margin of head not keeled; spines on posterolateral margins of head usually on a line that would pass well below ocelli (Fig. 23)

Agabus
26a. Fourth antennal segment more than $2 / 3$ length of third. . 27
26b. Fourth antennal segment less than $1 / 2$ length of third. . 28
27a. Cerci with several short, spinelike, setae on outer edge (Fig. 24); head not more than 2.5 mm wide Rhantus
27b. Cerci with at most 2 or 3 short setae (Fig. 25); head often about 3 mm wide

Colymbetes
28a. A row of spines on posterolateral margin of head; fourth antennal segment less than $1 / 4$ as long as third; head less than 1.3 mm wide

Laccophilus
28b. No spines on posterolateral margin of head; fourth antennal segment about $1 / 3$ as long as third

Agabus
29a. Maxillary stipes at least 4 times as long as wide (Fig. 26)
29b. Maxillary stipes broad not more than 3 times as long as wide (Fig. 27) . 32
30a. Head with long teeth anteriorly; cerci absent Cybister
30b. Head without long teeth anteriorly; cerci present 31
31a. Cerci with lateral fringes; labium without projecting lobes..
Dytiscus
31b. Cerci without lateral fringes; labium with 2 projecting lobes (Fig. 28)

Hydaticus
32a. Ligula apically bifid (Fig. 29) Acilius
32b. Ligula simple (Fig. 30) . 33
33a. Ligula nearly equal to or longer than first segment of labial palps (Fig. 30)

Graphoderus
33b. Ligula not as long as first segment of labial palps
Thermonectus
34a. HYDROPHILIDAE - First 7 abdominal segments with long lateral gills, some 2-3 times width of a segment . . Berosus
34b. Lateral gills absent or shorter than width of a segment. . 35
35a. Nine complete abdominal segments, tenth reduced but distinct . Helophorus
35b. Eight complete abdominal segments, 9 and 10 reduced and united
36a. Gula well-developed and attaining occipital opening; antennae arising farther forward than mandibles; sclerotized plates on abdominal segments Hydrochus
36b. Gula reduced and not attaining occipital opening; antennae not arising anterior to point of insertion of mandibles .. 37
37a. First antennal segment at least twice as long as next 2 together (Fig. 31); femora with fringes of long swimming hairs 41
37b. First antennal segment no more than slightly longer than following 2 segments (Fig. 32); femora without fringes of long swimming hairs
38a. Mandibles asymmetrical, the right with 2 teeth, the left with only 1; abdomen with prolegs on segments 3 to 7 Enochrus

38b. Mandibles symmetrical, each with 2 or 3 inner teeth; abdomen without prolegs . 39
39a. Labroclypeus with more than 6 teeth, those on right not clearly defined Cymbiodyta
39b. Labroclypeus with 4 or 5 prominent teeth 40
40a. Middle tooth on labroclypeus smaller than others (Fig. 33); prosternum entire

Sperchopsis
40b. All teeth of labroclypeus subequal (Fig. 34); prosternum with a mesal fracture Hydrobius
41a. Head subspherical; antennae 4 -segmented; each mandible with a single inner tooth, which is larger and bifid on right mandible (Fig. 35)

Hydrophilus
41b. Head subquadrangular, narrowed behind; antennae 3-segmented; each mandible with more than 1 , usually 2 , inner teeth 42
42a. Mentum with sides nearly straight (Fig. 36); lateral gills rudimentary tubular projections with several terminal setae

Tropisternus
42b. Mentum with sides convergent basally (Fig. 37); lateral gills fairly well developed and pubescent

Hydrochara
43a. HELODIDAE - Anterior margin of hypopharynx with a cen-
tral cone bearing 1 pair of flat spines (Fig. 38); head with 3 ocelli on each side . Elodes
43b. Cone bearing 2 pairs of flat spines; head with 1 or 2 ocelli on each side . 44
44a. Sides of abdominal segments with setae similar to those on dorsum, although usually more numerous Cyphon
44b. Sides of abdominal segments 3-6 with a regular row of very short, flattened setae that differ markedly from setae on dorsum (Fig. 39)
45a. Anterior of labrum straight, with corners bent under to expose inner portion in dorsal view (Fig. 40) .. Prionocyphon
45b. Anterior of labrum simply emarginate (Fig. 41) Scirtes
46a. PSEPHENIDAE - Abdominal pleura separated from each other (Fig. 7); no gills on abdominal segments 2-6 Ectopria
46b. Abdominal pleura contiguous; gills on abdominal segments 2-6

Psephenus
47a. ELMIDAE - Prothorax with a posterior sternum (Fig. 42) 48
47b. Prothorax without a posterior sternum (Fig. 43) 50
48a. Posterolateral angles of anterior abdominal segments produced (Fig. 44) Ancyronyx
48b. Posterolateral angles of abdominal segments not produced
49a. Anterior margin of head with a distinct tooth on each side (Fig. 45) . Stenelmis
49b. Anterior margin of head without a distinct tooth on each side . Microcylloepus
50a. Last abdominal segment 5 times longer than wide

Dubiraphia

50b. Last abdominal segment less than 3 times as long as wide

5ib. Mesopleuron undivided (Fig. 47) Optioservus

Desmopachria, Neoscutopterus, Dibolocelus, Helocombus, and Pronoterus not keyed.

SPECIES LIKELY TO BE FOUND IN
 WISCONSIN AND MOST RECENT
 KEY TO SPECIES

HALIPLIDAE

Brychius* - hungerfordi*
Haliplus - apostolicus, blanchardi, borealis, canadensis, connexus, cribrarius, fasciatus, immaculicollis, leopardus, longulus, ohioensis*, nitens*, pantherinus, subguttatus, triopsis (Adult keys Wallis 1933a)
Peltodytes - duodecimpunctatus, dunavani*, edentulus, lengi*, litoralis*, pedunculatus*, sexmaculatus, tortulosus (Adult keys Roberts 1913, Descr. Young 1961)

DYTISCIDAE

Acilius - fraternus, mediatus, semisulcatus, sy/vanus (Adult keys Hilsenhoff 1975)
Agabetes - acuductus
Agabus - aeruginosus*, ambiguus, antennatus, anthracinus, bifarius, canadensis, confinis, confusus, discolor*, disintegratus, erichsoni, erythropterus*, gagates, leptapsis*, obtusatus*, phaeopterus, punctatus, semipunctatus*, semivittatus, seriatus, subfuscatus*, tristis*, velox* (Adult keys Fall 1922a, Leech 1938)
Bidessonotus* -inconspicuus*
Celina - angustata
Colymbetes - longulus*, seminger*, sculptilis
(Adult keys Hatch 1928)
Copelatus - chevrolati*, glyphicus (Adult keys Young 1954)
Coptotomus - interrogatus
Cybister - fimbriolatus
Deronectes - griseostriatus, depressus (Adult keys Fall 1923, Zimmerman and Smith manuscript)
Desmopachria - convexa
Dytiscus - cordieri*, dauricus, fasciventris, harrisii*, hybridus, marginalis, sublimatus*, verticalis (Adult keys Hatch 1928, Wallis 1950)
Graphoderus - fasciatocollis, liberus, occidentalis, perplexus (Adult key Wallis 1939a)
Hydaticus - modestus, piceus (Adult keys Blatchley 1910)
Hydroporus - baldiellus*, clypealis, columbianus*, consimilis, dentellus, despectus, dichrous, fuscipennis, glabriusculus, hybridus*, melanocephalus*, mellitus, niger, notabilis, obscurus*, paugus, planiusculus, pulcher, rectus, semiflavus, signatus, solitarius, somnus, spurius*, stagnalis,
striatopunctatus*, striola, superioris, tartaricus*, tenebrosus, triangularis, tristis, vitiosus*, vittatipennis, vittatus, wickhami (Adult keys Fall 1923, Young 1953b)
Hydrovatus - pustulatus
Hygrotus - acaroides, canadensis*, compar, dissimilis, farctus, impressopunctatus, infuscatus*, laccophilinus, nubilus, patruelis**, sayi, suturalis*, turbidus
(Adult keys Fall 1919, Anderson 1971, manuscript)
IIlybius - ater*, augustior*, biguttulus, confusus*, denikei, fraterculus*, ignarus*, laramaeus, pleuriticus, subaeneus (Adult keys Wallis 1939b)
Laccophilus - biguttatus, fasciatus*, maculosus, proximus, undatus* (Adult key Zimmermian 1970)
Laccornis - conoideus, deltoides*, difformis*
(Adult key Fall 1923)
Liodessus - affinis, flavicollis, fuscatus (Adult Key 1954)
Matus - bicarinatus*, ovatus (Adult key Young 1953a)
Neoscutopterous* - angustus*
Oreodytes - laevis*, scitulus (Adult key Hatch 1933)
Rhantus - binotatus, consimilis, frontalis*, sinuatus**, suturellus*, wallisi (Adult keys Hatch 1928, Wallis 1933b, Zimmerman and Smith 1975)
Thermonectus - basillaris, ornaticollis (Adult key Blatchley 1910)
Uvarus - granariys, lacustris (Adult key Young 1954)

NOTERIDAE

Hydrocanthus* -iricolor*
Pronoterus* - semipunctatus*
Suphisellus - puncticollis

GYRINIDAE

Dineutus - assimilis, discolor, hornii, nigrior
(Adult key Hatch 1929)
Gyrinus - aeneolus, affinis, analis, aquiris, bifarius, confinis, dichrous, frosti, hatchi*, impressicollis, latilimbus, lecontei, lugens, maculiventris, marginellus, minutus, parcus,
pectoralis, piceolus ${ }^{*}$, pugionis, ventralis, wallisi
(Adult key Fall 1922b, Descr. Wallis 1926a, 1926b)
HYDROPHILIDAE
Anacaena - limbata
Berosus - aculeatus*, fraternus*, infuscatus*, ordinatus*, peregrinus*, pugnax, striatus*
(Adult keys Wooldridge 1967, Matta 1974)
Chaetarthria* - pallida*
Crenitis - digestus, longulus* (Adult key Willson 1967)
Cymbiodyta - acuminata, blanchardi, chamberlaini*, minima, semistriata, toddi, vindicata (Adult key Smetana 1974)
Dibolocelus* - ovatus*
Enochrus - blatchleyi*, cinctus, collinus, consors, consortus, diffusus, hamiltoni, ochraceus, perplexus, pygmaeus, sayi
(Adult key Gunderson manuscript)
Helocombus - bifidus
Helophorus - lacustris*, linearis*, lineatus*, nitidulus*, oblongus*, tuberculatus*
Hydrobius - fuscipes, melaenus, tumidus* (Adult key Wooldridge 1967)
Hydrochara - obtusata
Hydrochus - brevitarsus*, currani, granulatus, neosimplex (manuscript name - Hellman), pseudosquamifer, rutipes, scabratus, setosus*, squamifer, subcupreus (Adult key Hellman manuscript)
Hydrophilus - triangularis
Laccobius - agilis, arenarius*, minutoides*, spangleri* (Adult key Willson 1967, Cheary manuscript)
Paracymus - confluens*, despectus*, subcupreus (Adult key Wooldridge 1966)
Sperchopsis - tesselatus
Tropisternus - blatchleyi, columbianus, ellipticus, glaber, lateralis, mixtus, natator (Adult key Spangler 1960)
HYDRAENIDAE (Adult key Blatchley 1910)
Hydraena - pennsy/vanica*
Ochthebius - cribricollis*, foveicollis*, nitidus*, putnamensis*
PSEPHENIDAE
Ectopria - nervosa
Psephenus - herricki
ELMIDAE
Ancyronyx - variegata
Dubiraphia - bivittata, minima, quadrinotata, robusta, vittata
(Adult key Hilsenhoff 1973)
Macronychus - glabratus
Microcylloepus - pusillus
Optioservus - fastiditus, trivittatus (Adult key Brown 1972)
Stenelmis - bicarinata, concinna, crenata, decorata, douglasensis, markelii, musgravei, quadrimaculata, sandersoni, vittipennis, + several undescribed (Adult key Brown 1972)
DRYOPIDAE (Adult key Brown 1972)
Helichus - lithophilus, striatus
HELODIDAE (No larval key)
Cyphon-aliceae*, alvahi, americanus*, collaris, craigi, diffusus*, elutus, modestus, nebulosus, obscurus, punctatus, perplexus*, pusillus, shenefelti, variabills
Elodes - fuscipennis, pulchella, thoracica
Prionocyphon - discoideus*, limbatus*
Scirtes - orbiculatus, tibialis

LITERATURE CITED

Anderson, R.D. 1971. A revision of the Nearctic representatives of Hygrotus (Coleoptera: Dytiscidae). Ann. Entomol. Soc. Amer. 64: 503-512.
Blatchley, W. S. 1910. An illustrated descriptive catalogue of the Coleoptera or beetles (exclusive of the Rhynchophora) known to occur in Indiana. Bull. Ind. Dep. Geol. Natur. Resources 1: 1-1386.
Brown, H. P. 1972. Aquatic Dryopoid beetles (Coleoptera) of the United States. U. S. Envir. Prot. Agency Ident. Man. No. 6. 82 pp.
Fall, H. C. 1919. The North American species of Coelambus. J. D. Sherman, Mt. Vernon, N. Y. 20 pp.
Fall, H. C. 1922a. A review of the North American species of Agabus together with a description of a new genus and species of the tribe Agabini. J. D. Sherman, Jr., Mt. Vernon, N. Y. 36 pp.
Fall, H. C. 1922b. The North American species of Gyrinus (Coleoptera). Trans. Amer. Entomol. Soc. 47: 269-306.
Fall, H. C. 1923. A revision of the North American species of Hydroporus and Agaporus. J. D. Sherman, Jr., Mt. Vernon, N. Y. 129 pp.

Hatch, M. H. 1928. Studies on Dytiscidae. Bull. Brooklyn Entomol. Soc. 23: 217-229.
Hatch, M. H. 1929. Records and new species of Coleoptera from Oklahoma and western Arkansas, with subsidiary studies. Pub. Univ. Okla. Biol. Surv. 2: 15-26.
Hatch, M. H. 1933. Studies on Hydroporus. Bull. Brooklyn Entomol. Soc. 28: 21-27.
Hilsenhoff, W. L. 1973. Notes on Dubiraphia (Coleoptera: Elmidae) with descriptions of five new species. Ann. Entomol. Soc. Amer. 66: 55-61.
Hilsenhoff, W. L. 1975. Notes on nearctic Acilius (Dytiscidae), with the description of a new species. Ann. Entomol. Soc. Amer. 68: 271-274.
Leech, H. B. 1938. A study of the Pacific Coast species of Agabus Leach, with a key to the nearctic species. M.S. Thesis, Univ. Calif. Berkeley.
Matta, J. F. 1974. The insects of Virginia: No. 8. The aquatic Hydrophilidae of Virginia (Coleoptera: Polyphaga): V. P. I. and State U. Res. Div. Bull. 94: 1-44.
Roberts, C. H. 1913. Critical notes on the species of Haliplidae of America north of Mexico with descriptions of new species. J. New York Entomol. Soc. 21: 91-123.

Smetana, A. 1974. Revision of the genus Cymbiodyta Bed. (Coleoptera: Hydrophilidae). Mem. Entomol. Soc. Can. 93: 1113.

Spangler, P. J. 1960. A revision of the genus Tropisternus (Coleoptera: Hydrophilidae). Ph.D. Thesis, Univ. Missouri. 364 pp.
Spangler, P. J. 1962. Natural history of Plummers Island, Maryland. XIV. Biological notes and descriptions of the larva and pupa of Copelatus glyphicus (Say) (Coleoptera: Dytiscidae). Proc. Biol. Soc. Wash. 75: 19-24.
Spangler, P. J. 1973. A description of the larva of Celina angustata Aube (Coleoptera: Dytiscidae). J. Wash. Acad. Sci. 63: 165-168.

Spangler, P. J. and R. D. Gordon. 1973. Descriptions of the larvae of some predacious water beetles (Coleoptera: Dytiscidae). Proc. Biol. Soc. Wash. 86: 261-278.
Wallis, J. B. 1926a. The status of Gyrinus piceolus Blatchley (Coleoptera). Can. Entomol. 58: 50.
Wallis, J. B. 1926b. Some new Coleoptera. Can. Entomol. 58: 8995.

Wallis, J. B. 1933a. Revision of the North American species, (north of Mexico), of the genus Haliplus, Latreille. Trans. Royal Can. Inst. 19: 1-76.
Wallis, J. B. 1933b. Some new Dytiscidae (Coleoptera). Can. Entomol. 65: 268-278.
Wallis, J. B. 1939a. The genus Graphoderus Aube in North America (north of Mexico). Can. Entomol. 71: 128-130.
Wallis, J. B. 1939b. The genus llybius Er. in North America (Coleoptera: Dytiscidae). Can. Entomol. 71: 192-199.
Wallis, J. B. 1950. A new species of Dytiscus Linn. (Coleoptera: Dytiscidae). Can. Entomol. 82: 50-52.
Willson, R. B. 1967. The Hydrophilidae of Michigan with keys to species of the Great Lakes Region. M.S. Thesis, Mich. State Univ. 100 pp.
Wooldridge, D. P. 1966. Notes on nearctic Paracymus with descriptions of new species (Coleoptera: Hydrophilidae). J. Kans. Entomol. Soc. 39: 712-725.
Wooldridge, D. P. 1967. The aquatic Hydrophilidae of Illinois. III. State Acad. Sci. 60: 422-431.
Young, F. N. 1953a. Two new species of Matus, with a key to the known species and subspecies of the genus (Coleoptera: Dytiscidae). Ann. Entomol. Soc. Amer. 46: 49-55.
Young, F. N. 1953b. A new Hydroporus from Michigan, with notes on other members of the Hydroporus vilis group (Coleoptera: Dytiscidae). Bull. Brooklyn Entomol. Soc. 48: 116-122.
Young, F. N. 1954. The water beetles of Florida. Univ. Fla. Press, Gainesville. 238 pp.
Young, F. N. 1961. Pseudosibling species in the genus Peltodytes (Coleoptera: Haliplidae). Ann. Entomol. Soc. Amer. 54: 214222.

Young, F. N. 1967. The Hydroporus blanchardi-tigrinus complex (Coleoptera: Dytiscidae). Fla. Entomol. 50: 63-69.
Zimmerman, J. R. 1970. A taxonomic revision of the aquatic beetle genus Laccophilus (Dytiscidae) of North America. Mem. Amer. Entomol. Soc. 26: 1-275.
Zimmerman, J. R. and R. L. Smith. 1975. The genus Rhantus (Coleoptera: Dytiscidae) in North America. I. General account of the species. Trans. Amer. Entomol. Soc. 101: 33-123.

Manuscripts

Anderson, R. D., School of Sciences, Southern Utah State College, Cedar City, Utah 84720 - Hygrotus
Cheary, B. S., Union Carbide Corp., P.O. Box 1906, Salinas, California 93901 - Laccobius
Gunderson, R., Department of Biological Sciences, St. Cloud State College, St. Cloud, Minnesota 56301 - Enochrus
Hellman, J. L., Department of Entomology, University of Maryland, College Park, Maryland 20742 - Hydrochus
Zimmerman, J. R. and A. H. Smith, Department of Biology, Box 3 AF, Las Cruces, New Mexico 88003 - Deronectes

Figures 1-18. - Coleoptera adults. 1. Ventral view of posterior of Haliplus showing coxal plates (CP). 2. Ventral view of Agabus showing prosternal process (PP), first abdominal segment (ABD1), metacoxal process (MC), and metasternum (MS). 3. Ventral view of Tropisternus showing first abdominal segment (ABD-1). 4. Lateral view of thoracic sterna of Agabus (ventral side up) showing prosternum (PS), its postcoxal process (PP), and mesosternum (MS). 5. Lateral view of thoracic sterna of Hydroporus showing prosternum (PS), its postcoxal process (PP), and mesosternum (MS). 6. Profemur (F), tibia (TI), and tarsus (TA) of

Hydrocanthus. 7. Antenna of Tropisternus showing cupule (C). 8. Antenna of Helichus. 9. Pronotum of Haliplus. 10. Pronotum of Brychius. 11. Maxillary palp of Peltodytes. 12. Maxillary palp of Haliplus. 13. Metacoxal process (PC) and trochanters (TR) of Desmopachria. 14. Metacoxal process (CP) and trochanters (TR) of Hydroporus. 15. Metatibia (TI) of Desmopachria. 16. Metatibia (TI) of Llodessus. 17. Meso- and metasternum of Bidessonotus. 18. Dorsal view of head of Llodessus showing transverse suture (S).

Figures 19-41. - Coleoptera adults. 19. Ventral view of mesoand metathorax of Hygrotus showing carina (C). 20. Procoxae and prosternal process of Hydrovatus. 21. Procoxae and prosternal process of Hygrotus. 22. Metacoxal lobes (C), trochanters (T), and femora (F) of Laccornis. 23 and 24. Metacoxal processes of Hydroporus. 25. Metacoxal process of Deronectes. 26. Lateral view of head of Agabus. 27. Ventral view of metafemur of Agabus. 28. Metacoxal plates of Copelatus. 29. Metasternum of

Hydaticus showing metasternal wing (MW). 30. Metasternum of Acilius showing metasternal wing (MW). 31. Mesofemur of Thermonectus. 32. Mesofemur of Graphoderus. 33. Elytron of Sperchopsis. 34. Metatibia of Laccobius. 35. Metatibia of Anacaena. 36. Elytra of Anacaena showing sutural striae (SS). 37. Dorsal view of Ancyronyx. 38. Dorsal view of Dubiraphia. 39. Dorsal view of Optioservus showing basal carina (C). 40. Dorsal view of Stenelmis. 41. Protibia of Optioservus showing tomentum (T).

Figures 1-23. - Coleoptera larvae. 1. Dorsal view of Gyrinus. 2. Dorsal view of Agabus. 3. Dorsal view of Pronoterus. 4. Dorsal view of Haliplus. 5. Dorsal view of Tropisternus. 6. Dorsal view of Scirtes. 7. Dorsal view of Ectopria. 8. Lateral view of Stenelmis. 9. Lateral view of Donacia. 10. Dorsal view of head of Dineutus. 11. Dorsal view of head of Gyrinus. 12. Dorsal view of Hydrovatus. 13. Last abdominal segment and cerci of Laccophilus. 14. Last abdominal segment and cerci of Agabus. 15. Lateral view of
last abdominal segment and cerci of Celina (after Spangler 1973). 16 and 17. Dorsal view of heads of Hygrotus. 18. Ventral view of last abdominal segment of Agabetes (after Spangler and Gordon 1973). 19. Prothoracic leg of Matus (after Spangler and Gordon 1973). 20. Last two antennal segments of Copelatus (after Spangler 1962). 21. Mandible of Copelatus (after Spangler 1962). 22. Lateral view of head of llybius. 23. Lateral view of head of Agabus.

Figures 24-47. - Coleoptera larvae. 24. Cercus of Rhantus. 25. Cercus of Colymbetes. 26. Ventral view of right maxilla of Dytiscus showing stipes (S). 27. Ventral view of right maxilla of Acilius showing stipes (S). 28. Labium of Hydaticus. 29. Labium of Acilius. 30. Labium of Graphoderus. 31. Antenna of Tropisternus. 32. Antenna of Hydrobius. 33. Anterior margin of frontoclypeus of Sperchopsis. 34. Anterior margin of fronto-clypeus of Hydrobius. 35. Dorsal view of right mandible of Hydrophilus. 36.

Labium of Tropisternus. 37. Labium of Hydrochara. 38. Ventral view of anterior margin of head of Elodes. 39. Lateral margin of sixth abdominal tergum of Scirtes. 40. Dorsal view of labrum of Prionocyphon. 41. Dorsal view of labrum of Scirtes. 42. Prosternum of Stenelmis. 43. Prosternum of Optioservus. 44. Dorsal view of abdominal segments 2-5 of Ancyronyx. 45. Dorsal view of head of Stenelmis. 46. Mesosternum and mesopleura of Macronychus. 47. Mesosternum and mesopleura of Optioservus.

This very large holometabolous order is mostly terrestrial, but there are many species and several families with aquatic larvae. Most aquatic Diptera are in the suborder Nematocera, which contains several families in which most or all of the species have aquatic larvae and pupae. In the suborders Brachycera and Cyclorrhapha, families in which aquatic species occur are largely terrestrial, and even within a genus there may be aquatic and terrestrial species. There are normally 4 larval instars in Nematocera, 3 in most Cyclorrhapha, and as many as 8 or 9 in Brachycera.

Family and generic names used in the key follow Stone et al. (1965) and take into consideration a ruling by the International Commission on Zoological Nomenclature (1963) to suppress Meigen 1800 genera. A more recent classification by Hamilton et al. (1969) was used for Chironomidae. Unfortunately the taxonomy of larvae in most families is very poorly known, and species identification is possible in only a few (Culicidae, Chaoboridae, Simuliidae, and Sciomyzidae). The problem is especially acute in Brachycera and Cyclorrhapha where generic identifications of larvae are not possible in some families. A list of species of aquatic Diptera in Wisconsin is not appended because of larval identification problems. In most families adults can be identified, but in many families one cannot tell which species have aquatic larvae. The catalog of North American Diptera (Stone et al. 1965) lists species distribution and references to recent species keys. Within about 2 years a comprehensive manual of North American Diptera will be published, and it will contain keys to species as well as the most recent information on their distribution.

NEMATOCERA

TIPULIDAE - Crane Flies (13 aquatic genera)
One of the largest and most common nematocerous families, the long-legged and often large adults are frequently encountered. Many species and genera are terrestrial or semiaquatic. Most aquatic species develop in streams where Antocha, Dicranota, Hexatoma, and Tipula are most common and Limnophila, Limonia, Pedicia, Pilaria, Erioptera, and Pseudolimmophila also can be found in the bottom substrate, moss or algal scum on rocks, debris, or rotting wood. Helius, Prionocera, and Phalacrocera occur in weedy ponds, marshes, or margins of lakes and streams. Most species probably have a one year life cycle. The larvae have a wide range of food habits, with both herbivorous and carnivorous species being found, but there has been little study of their biology.
PSYCHODIDAE - Moth Flies (2 genera, 14 species)
Species in two of the genera are aquatic; others are semiaquatic or terrestrial. Most are probably multivoline, breeding in water with large amounts of organic matter, water that is often very polluted. Larvae and adults feed on decaying organic matter, but little is known about their biology.
PTYCHOP TERIDAE - Phantom Crane Flies (2 genera, 4 species)
The larvae live on decaying debris along edges of ponds and slow streams, or in shallow marsh areas. All species are aquatic as larvae and pupae, but they are generally uncommon and difficult to find. Little is known about their biology.

BLEPHARICERIDAE - Net-winged Midges (1 genus, 2 species)

Larvae of this small family are rare in Wisconsin, occurring only in the fastest water of clean northern streams. Here they are found on rocks or vegetation hanging into the stream where they feed on algae and diatoms.

DIXIDAE (2 genera, 3 species)

Larvae in this aquatic family are fairly common in cattail marshes and among vegetation along streams, ponds, and lakes.

They usually remain in the surface film and feed on microorganisms and detritus. Adults are short-lived midges that do not feed. Little is known about their life cycle.

CHAOBORIDAE - Phantom Midges (3 genera, 8 species)

The transparent larvae occur in selected lentic habitats. The uncommon larvae and pupae of Eucorethra and Mochlonyx are found in snow-melt pools in the spring where they feed mostly on Aedes mosquito larvae and emerge shortly after Aedes mosquitoes in the spring. Chaoborus larvae occur commonly in pools, ponds, and marshes, and are one of the few insect genera to commonly inhabit sublittoral and profundal zones of lakes. It is the only genus to commonly occur in limnetic areas. Larvae of Chaoborus are predaceous on small insects and crustacea. Most species are univoltine in Wisconsin, with emergence in late spring or early summer. The short-lived adults are frequently attracted to lights and may create nuisance problems.

CULICIDAE - Mosquitoes (9 genera, 50 species)

Because adults of some species feed on people and occasionally transmit disease, both the biology and taxonomy have been thoroughly studied. Larvae of one or more species breed in almost every conceivable lentic situation. Aedes are abundant in snow-melt pools, and along with much rarer Psorophora larvae, also occur abundantly in temporary ponds and marshes. Anopheles are common among emergent vegetation of marshes, and stream and lake margins. Culex, Culiseta, and Uranotaenia commonly inhabit permanent ponds and marshes. Mansonia larvae attach to cattails and similar plants from which they get air for respiration. Wyomyia larvae are found only in pitcher plants, and tree holes contain Aedes larvae or very rarely Orthopodomyia in the extreme south. Most species are univoltine, but several are multivoltine. Larvae of most species feed on microorganisms, algae, and detritus, but Psorophora larvae are predaceous. Adults may be abundant from spring to fall, and species of Culex, Culiseta, and Anopheles overwinter as adults. Most species winter as eggs, but Wyomyia and Mansonia winter as larvae, the former freezing in the ice.
CERATOPOGONIDAE - Biting Midges, Punkies, No-see-ums
(8 genera)
Most species are very small, and probably because of their size they have been infrequently collected and are poorly known. Some species have terrestrial or only semiaquatic larvae, while aquatic species inhabit a variety of lentic habitats from tree holes to lakes. Palpomyia may be found in the sublittoral or profundal mud of lakes, but most Palpomyia, Bezzia, Probezzia, and other genera are found among emergent vegetation of lakes, ponds, and marshes. Larvae cannot be identified at the species level, and some genera cannot be separated. Most species have one or more generations per year. Palpomyia, Bezzia, and Probezzia larvae are predators, but feeding habits of other genera are poorly known. Adult Culicoides bite man, and can occasionally create a severe nuisance problem.

CHIRONOMIDAE - Lake Flies, Midges (69 aquatic genera)

Members of this very large nematocerous family are abundant in almost every type of aquatic habitat. Adults are often so numerous that they create nuisance problems, but fortunately they do not feed and are short-lived. Larvae are herbivores, omnivores, or detritivores, depending on the species. Most species are multivoltine, with adults on the wing in all but the coldest part of the winter. Biologies of a few species have been studied in detail, but in general the taxonomy is poorly known. Most larvae cannot be identified to species and some cannot be identified at the generic level. Adults of many species remain undescribed, and even adult taxonomy is somewhat confused.

SIMULIIDAE - Black Flies (4 genera, 27 species)
Larvae and pupae inhabit streams of all types where they attach to rocks and other objects in the current and feed by filtering plankton and organic debris from the water. Adults are bloodsucking insects that feed on animals, including humans, and sometimes become a serious problem along certain streams. Cnephia, Prosimulium, and most Eusimulium inhabit only cleaner streams, and are univoltine with emergence in the spring. Some species of Simulium are very tolerant of organic pollution and become abundant in partially polluted streams. Many are also multivoltine, with emergences throughout the spring and summer.

BRACHYCERA

STRA TIOMYIDAE - Soldier Flies (4 aquatic genera)
Most larvae are terrestrial, but larvae in at least 4 genera are known to be aquatic. Larval taxonomy is undeveloped; most species and many genera cannot be identified. Larvae of aquatic species are found among vegetation and debris in marshes, ponds, and lake margins where they feed on algae, detritus, and microorganisms. Pupae are aquatic, and remain in a puparium. Aquatic species are probably univoltine, with adults being found on flowers.
TABANIDAE - Horse Flies and Deer Flies (2 aquatic genera)
The predaceous larvae of some species are aquatic, but most inhabit semiaquatic situations. Pupation takes place in moist soil above the water line. Adults bite and are very annoying pests of humans and other animals. Larvae of Chrysops are found in streams, while those of Tabanus inhabit ponds and other lentic situations. Most species are univoltine, with adults being most abundant during the summer months.
RHAGIONIDAE - Snipe Flies (1 aquatic genus, 1 species)
A single species, Atherix variegata, is aquatic in Wisconsin and its predaceous larvae can be commonly found in gravel riffles of a variety of streams. The life cycle is one year, with pupation on land and emergence of the predaceous adults in early summer.

EMPIDIDAE - Dance Flies

Although most empidids are terrestrial, larvae of some spe-

KEY TO GENERA OF AQUATIC DIPTERA LARVAE IN WISCONSIN

1a. Larvae apparently 7 -segmented; first 6 segments each with a prominent ventral sucker (Fig. 1)

BLEPHARICERIDAE, Blepharicera
1b. Without 6 ventral suckers
2
2a. Head capsule completely sclerotized and fully visible; mandibles opposed and moving in a horizontal plane. . 12
2b. Head capsule absent, incomplete behind, or retracted at least partially into thorax
3a. Head capsule incomplete posteriorly and more or less retracted into thorax (Figs. 32-35); mandibles opposed and moving in a horizontal plane

TIPULIDAE 36
3b. Head capsule lacking, or incompletely sclerotized and elongate or truncate in shape (Figs. 2, 20, 21); mandibles replaced by vertically moving mouthhooks
4a. Head mostly visible, truncate in shape (Figs. 2, 20, 21); body somewhat flattened; posterior spiracular chamber margined with long, soft hairs (Fig. 2)

STRATIOMYIDAE 21
4b. Body nearly circular in cross section; head mostly retracted into thorax and elongate or indistinguishable.. 5
5a. Larva with a partially retractile caudal respiratory tube at least one-half as long as body (Fig. 3) ... SYRPHIDAE 34
5b. Larvae without a long respiratory tube
cies are aquatic, and in Wisconsin have frequently been collected from streams. Unfortunately larval taxonomy is in such a poor state that identification even at the generic level is not reliable. Little is known about their biology and life cycle.

DOLICHOPODIDAE

The predaceous larvae may be aquatic, semiaquatic, or terrestrial, but are so poorly known that generic identification is not reliable.

CYCLORRHAPHA

SYRPHIDAE - Flower Flies (3 aquatic genera)
Most species of this widespread and common family have terrestrial larvae, but those in at least 3 genera have been found in grossly polluted water and other shallow situations with an abundance of organic matter. Larvae feed on organic debris and pupate in a puparium, but identification at the species level is not possible.
SCIOMYZIDAE - Marsh Flies (12 aquatic genera, 63 species)
The larvae are predators or parasites of snails, slugs, or fingernail clams (Renocera) and except for those that feed on slugs and terrestrial snails, they are aquatic. Recently most species have been reared, so both larvae and adults can be identified to species, although mouthparts have to be examined even for some generic determinations. Pupation is at the water's surface, either in a snail shell or a floating puparium.

EPHYDRIDAE - Shore Flies, Brine Flies

Larvae are either aquatic, semiaquatic, or leaf miners, but their taxonomy is so poorly known that identification at the generic level is not realistic. Larvae are probably herbivores, but little is known about their biology.
MUSCIDAE (4 aquatic genera)
Although most larvae are terrestrial, those of some species of Limnophora, Lispe, Lispoides, Spilogona, and perhaps other genera are aquatic and live in streams, ponds, and lake margins. So little is known about the larvae that identifications at even the generic level are questionable. Larvae of most species are probably predaceous and have a one-year life cycle.

6a. Caudal spiracular disc with paimate hairs and surrounded by 8 -10 lobes, some of which may be very short (Fig. 24); body wrinkled (Fig. 4)

SCIOMYZIDAE 25
6b. Caudal spiracular disc without palmate hairs; if surrounded by lobes, body is not wrinkled

7
7a. Abdomen with distinct prolegs and paired terminal processes (Figs. 7-9)

9
7b. Prolegs indistinct or absent; terminal processes lacking 8
8a. Body tapering at both ends; a girdle of pseudopods on each segment (Fig. 5)

TABANIDAE 24
8b. Body terminating in a spiracular pit surrounded by pointed lobes; pseudopods only on ventral surface of segments (Fig. 6) DOLICHOPODIDAE (no generic key)
9a. Terminal processes ciliated, laterally divergent, and longer than prolegs (Fig. 7) RHAGIONIDAE, Atherix
9b. Terminal processes not ciliated and shorter than prolegs . 10
10a. Head structure visible with palpi and antennae; less than 4 mm long (Fig. 8) EMPIDIDAE (no generic key)
10b. Head structure lacking; may be more than $4 \mathrm{~mm} . .$. . 11
11a. Posterior pair of prolegs as long as or longer than respiratory tubes (Fig. 9) MUSCIDAE (no generic key)
11b. Posterior prolegs absent or shorter than respiratory tubes EPHYDRIDAE (no generic key)
12a. Prolegs absent 13
12b. Prolegs present at one or both ends of body or on abdominal segments (Figs. 15, 17, 18, 19)

16

13a. Thoracic segments fused and distinctly thicker than ab-
domen (Fig. 10) .. 14
13b. Thorax and abdomen about equal in diameter (Figs. 13, 14)

15
14a. Antennae prehensile, with long, strong apical spines (Fig. 11)

CHAOBORIDAE 48
14b. Antennae not prehensile and lacking long apical spines (Fig. 12)

CULICIDAE 50
15a. Thoracic and abdominal segments each distinctly divided into 2 or 3 annuli (Fig. 13) PSYCHODIDAE 58
15b. No secondary annulations (Fig. 14)
CERATOPOGONIDAE 59
16a. Prolegs on intermediate body segments (Figs. 15, 17). . 17
16b. Prolegs on anterior and/or posterior ends of body only (Figs. 18, 19)

18
17a. Paired ventral prolegs on abdominal segments 1 and 2 (Fig. 15); posterior end of body with 2 pairs of fringed processes (Fig. 16)

DIXIDAE 63
17b. Paired ventral prolegs on abdominal segments 1,2 , and 3 ; posterior end of body with a long respiratory tube (Fig. 17)

PTYCHOPTERIDAE 64
18a. Prolegs present only on prothorax; posterior of abdomen swollen (Fig. 18)

SIMULIIDAE 65
18b. Posterior prolegs present 19
19a. Only posterior prolegs present
CERATOPOGONIDAE, Dasyhelia
19b. Both anterior and posterior prolegs present (Fig. 19) .. 20
20a. Body covered with long, strong spines or bristles
CERATOPOGONIDAE, Atrichopogon
20b. Body at most covered with setae ... CHIRONOMIDAE 68
21a. STRATIOMYIDAE - Antennae dorsal, remote from margin of head (Fig. 20)

22
21b. Antennae at anterolateral angles of head (Fig. 21) 23
22a. Ventral curved spines on posterior margin of next to last segment (may be concealed in intersegmental membranous fold)

Euparyphus
22b. No spines on posterior margin of next to last segment Nemotelus
23a. Ventral curved spines on posterior margin of next to last segment (may be concealed)

Odontomyia
23b. No spines on posterior margin of next to last segment
Stratiomys
24a. TABANIDAE - Last antennal segment as long as or longer than next to last (Fig. 22); larvae less than 20 mm long

Chrysops
24b. Last antennal segment shorter than next to last (Fig. 23); grown larva more than 20 mm

Tabanus
25a. SCIOMYZIDAE* - Patches of spinules present ventrally 26
25b. Patches of spinules absent 29
26a. Integument with a thick coat of transparent spinules; palmate hairs surrounding posterior spiracles; ventral or ventrolateral lobes of spiracular disc elongate (Fig. 24)

Antichaeta
26b. Integument without a thick coat of transparent spinules; posterior spiracles without palmate hairs; ventral and ventrolateral lobes of spiracular disc short

27
27a. Anterior spiracles bifid . Colobaea
27b. Anterior spiracles circular, not divided 28
28a. Lobes of spiracular disc reduced, only ventral lobes distinct

Sciomyza
28b. At least ventral and ventrolateral lobes distinct
29a. Hypostomal and pharyngeal sclerites fused (Fig. 25)
Renocera
29b. Hypostomal and pharyngeal sclerites separate (Fig. 26) 30
30a. Ventral arch triangular (Fig. 27); integument black; 8 lobes on spiracular disc . Dictya
30b. Ventral arch bilobed (Figs. 28, 29); 8 or 10 lobes on spiracular disc

[^0]31a. Spiracular disc with 10 lobes (Fig. 24); ventral arch with posterolateral projections (Fig. 28)

Sepedon
31b. Spiracular disc with 8 lobes; ventral arch without posterolateral projections (Fig. 29)
32a. Postanal portion of segment 12 much longer than wide
Elgiva
32b. Postanal portion of segment 12 about as long as wide 33 33a. Lateral, ventrolateral, and ventral lobes of spiracular disc elongate, subequal
. Hedria
33b. Lateral lobes much shorter than elongate or short ventrolateral and ventral lobes

Tetanocera
34a. SYRPHIDAE - Respiratory tube, when extended, about 1/2 length of body

Chrysogaster
34b. Respiratory tube, when extended, much longer than body (Fig. 3)
35a. Longitudinal tracheal trunks straight Eristalis
35b. Longitudinal tracheal trunks undulating Helophilus
36a. TIPULIDAE - Body covered with very long spines
Phalacrocera
36b. Body without long spines . 37
37a. Spiracular disc surrounded by 6 or 8 lobes 38
37b. Spiracular disc surrounded by 5 or fewer lobes 39
38a. Spiracular lobes elongate, digitiform, and fringed with long hairs (Fig. 30)

Prionocera
38b. Spiracular lobes usually bifid, not elongate or fringed with long hairs

Tipula
39a. Spiracular disc with 2 long ventral lobes (Fig. 31) 40
39b. Spiracular disc not as above 42
40a. Spiracles lacking or vestigial; dark creeping welts dorsally and ventrally on abdominal segments 2-7 (Fig. 32) Antocha
40b. Spiracles large and exposed 41
41a. Conspicuous cylindrical prolegs on abdominal segments 3-7

Dicranota
41b. Ventral raised welts on abdominal segments 4-7. . Pedicia
42a. Blades of maxillae visible, projecting from retracted head; head capsule 4-6 slender rods, posterior incisions deep (Fig. 33)

43
42b. Blades of maxillae do not project from retracted head; head capsule massive and complete with narrow posterior incisions (Fig. 34)

45
43a. Mentum a narrow, sclerotized, transverse bar (Fig. 35) ...
Limnophila
43b. Mental region not sclerotized 44
44a. Dorsal plate of head capsule united into a spatula; spiracular lobes elongate and covered with very long fringe of hair (Fig. 36)

Pilaria
44b. Dorsal plate of head capsule divided; spiracular lobes short; hair fringe on lobes not exceptionally long (Fig. 37); entire body clothed with yellow pubescence ... Hexatoma

45a. Abdominal segments with basal creeping welts 46
45b. Abdominal segments without creeping welts 47
46a. Dorsal and ventral creeping welts Limonia
46b. Only 6 ventral welts; body covered with long, dark pubescence

Helius
47a. Spiracular disc with 4 lobes (Fig. 38) . . Pseudolimnophila
47b. Spiracular disc with 5 lobes (Fig. 39) Erioptera
48a. CHAOBORIDAE - Abdominal segment 8 with dorsal respiratory siphon

Mochlonyx
48b. No respiratory siphon on abdominal segment 8 49
49a. Dark air sacks in thorax and abdominal segment 7
Chaoborus
49b. Air sacks lacking . Eucorethra
50a. CULICIDAE - Abdominal segment 8 without a respiratory siphon (Fig. 10) . Anopheles
50b. A respiratory siphon on abdominal segment 8 (Fig. 40) 51
51a. Siphon with a pecten (Fig. 40) 52
51b. Siphon without a pecten 56
52a. Upper and lower head hairs single, spinelike (Fig. 41)
Uranotaenia
52b. Upper and lower head hairs not spinelike 53

53a. Siphon with a pair of large basoventral hair tufts (Fig. 40) Culiseta
53b. Siphon without such hair tufts (Figs. 42-45) 54
54a. Siphon with several pairs of ventral tufts, some of which may be single long hairs (Fig. 42) Culex
54b. Siphon with only a single pair of ventral tufts, or none 55
55a. Ventral brush of anal segment with several tufts arising out of sclerotized ring (Fig. 43) Psorophora
55b. Ventral brush of anal segment with all tufts posterior to sclerotized ring (Fig. 44), or sclerotized ring incomplete ventrally

Aedes
56a. Siphon triangular and very short (Fig. 45); head wider than long . Mansonia
56b. Siphon conical and elongate; head as long as wide .. 57
57a. Siphon with many single hairs (Fig. 46) Wyeomyia
57b. Siphon with a single pair of highly branched tufts
Orthopodomyia
58a. PSYCHODIDAE - Twenty-six dorsal plates; paired adanal plates and a single preanal plate (Fig. 47) Pericoma
58b. Dorsal plates absent or numbering less than 26; adanal plate single, transverse, preanal plates absent. . Psychoda
59a. CERATOPOGONIDAE - Head more than twice as long as wide; body segments long and slender (Fig. 14) 60
59b. Head about 1-1/2 times as long as wide; body segments only slightly longer than head
60a. Anal hairs as long as or longer than last segment; entire dorsal surface mottled with red pigment; length not exceeding 6 mm

Alluaudomyia
60b. Anal hairs usually shorter than last segment (Fig. 14); mottling, if present, does not cover entire dorsum

Bezzia, Probezzia, or Palpomyia
61a. Body curved; less than 5 mm long; body segments wider than head

Stilobezzia
61b. Body straight . 62
62a. Head pear-shaped; body segments wider than head; up to 10 mm long . Palpomyia
62b. Head oval; body segments about same width as head; less than 5 mm long (Fig. 48) Culicoides
63a. DIXIDAE - Dorsum of abdomen bare or nearly so Dixella
63b. Dorsum of abdomen with rosettes of hair on segments 2-7 Dixa
64a. PTYCHOPTERIDAE - Body pale; prolegs weakly developed; mandibles with 3 outer teeth Ptychoptera
64b. Body rusty-red; prolegs well-developed; mandibles with a single outer tooth

Bittacomorpha
65a. SIMULIIDAE - Antennal segments 1-2 colorless, 3-4 dark brown or black; mental plate with laterally notched middle tooth (Fig. 49)

Prosimulium
65b. Apical antennal segments not darker than basal ones; middle tooth of mental plate not notched (Figs. 51, 52) 66
66a. Ventral tubercles large and conspicuous (Fig. 50); head spots dark; throat cleft rounded apically; anal lobes compound

Eusimulium.
66b. Ventral tubercles absent or inconspicuous; head spots dark or light; throat cleft pointed apically, inverted Vshaped, or rounded; anal lobes simple or compound .. 67
67a. Mental plate with a large median tooth and a large tooth on each side flanked by 3 smaller teeth (Fig. 51); anal gill with compound lobes (one common species has 3 simple lobes)

Simulium
67b. Mental plate not as above (Fig. 52); anal gill with simple lobes ... Cnephia
68a. CHIRONOMIDAE - Antennae retractile into head, basal segment usually elongate (Fig. 53) ... TANYPODINAE 72
68b. Antennae non-retractile69

69a. Striated ventromental plates present (Fig. 54)
CHIRONOMINAE 107
69b. Ventromental plates, if present, never striated but sometimes bearded (Fig. 55)

70a. Third antennal segment annulated (Fig. 56)
DIAMESINAE 85

70b. Third antennal segment not annulated
71
71a. Ventromental plates large and heavily bearded (Fig. 55) or mesally pointed (Fig. 57) DIAMESINAE 87
71b. Ventromental plates, if present, small, rounded or laterally pointed, and not heavily bearded (Fig. 58)

ORTHOCLADINAE 89
72a. TANYPODINAE - Dorsomental combs present (Fig. 53) 73
72b. Dorsomental combs absent 75
73a. Ligula with 5 black teeth Procladius
73b. Ligula with 4 or 5 yellow or reddish teeth 74
74a. Toothed margin of ligula convex (Fig. 59); mandibles with a bulbous base and very minute lateral teeth (Fig. 60); ligula with 5 teeth

Tanypus
74b. Toothed margin of ligula straight or concave (Fig. 61); lateral teeth on mandible usually distinet; ligula with 4 or 5 teeth

Psectrotanypus
75a. Body with a dense fringe of hairs laterally; ligula with 6 or 7 teeth

76
75b. Body without lateral hair fringe, only scattered setae; ligula with 5 teeth . 77
76a. Ligula with 6 teeth; mandibles hook-like (Fig. 62); antennae $3 / 4$ as long as head Clinotanypus
76b. Ligula with 7 teeth; mandibles gently curved (Fig. 63); antennae $1 / 2$ as long as head Coelotanypus
77a. Head about 3 times as long as antennae; preanal papillae about 9 times as long as wide; body red; mandibles with a strong blunt lateral tooth and a small accessory tooth ...

Natarsia
77b. Head seldom more than twice as long as antennae; preanal papillae not more than 7 times as long as wide; body never red; mandibles variable

78a. Maxiflary palpi with 2 or more basal segments
Ablabesmyia
78b. Maxillary palpi with only 1 basal segment 79
79a. Preanal papillae dark and about 6 times as long as wide; supra-anal bristle dark, stiff, and longer than posterior prolegs; anal papillae longer than prolegs (Fig. 64) Pentaneura
79b. Preanal papillae less than 5 times as long as wide; supraanal bristle shorter than posterior prolegs and not stiff; anal papillae not longer than prolegs

80
80a. Middle tooth of ligula longer than first lateral teeth; anal papillae about same length as prolegs

81
80b. Middle tooth of ligula smaller or subequal to first lateral teeth; anal papillae shorter than prolegs 82
81a. First and/or second antennal segments brown
Labrundinia
81b. All antennal segments yellow; lotic Nilotanypus
82a. Basal antennal segment 6.0-7.5 times as long as remaining segments; some claws on posterior prolegs dark and some toothed on inner edge Guttipelopia
82b. Basal antennal segment less than 5.5 times as long as remaining segments; claws on posterior prolegs variable, usually all yellow

83
83a. Toothed margin of ligula straight, teeth subequal (Fig. 65); basal antennal segment less than 3.6 times as long as remaining segments

Zavrelimyia
83b. Toothed margin of ligula concave; basal antennal segment more than 3.6 times as long as remaining segments .. 84
84a. First lateral teeth of ligula pointed outward (Fig. 66); lateral teeth of mandibles minute and indistinct

Conchapelopia, Arctopelopia, Rheopelopia
84b. First lateral teeth of ligula not pointed outward; lateral teeth of mandibles distinct . Larsia
85a. DIAMESINAE - Mandible with a hook-shaped lateral tooth (Fig. 67); mental plate without distinct teeth . . Pothastia
85b. Mandible with 4 lateral teeth; mental plate with numerous strong teeth

86

86a. Middle of mental plate with a very broad pale tooth (Fig. 68)

Sympothastia
86b. Middle of mental plate dark with several teeth (Fig. 69) .

Diamesa

87a. DIAMESINAE - Ventromental plates with only a few hairs (Fig. 57); middle of mental plate concave with indistinct teeth (Fig. 57)

Monodiamesa
87b. Ventromental plates heavily bearded (Fig. 55); middle of mental plate, if concave, with 2 distinct median teeth (Fig. 55)

88a. Mental plate inconspicuous with unpaired middle tooth; mandibles circular and heavily haired Odontomesa
88b. Mental plate with a pair of teeth in center (Fig. 55); mandibles not heavily haired

Prodiamesa
89a. ORTHOCLADINAE - Antennae at least half as long as head; mental plate with 13 teeth, middle tooth slightly recessed between first laterals 90
89b. Antennae less than half as long as head............. 91
90a. Antennae longer than head, 4 -segmented ... Corynoneura
90b. Antennae slightly more than half as long as head, 5 -segmented

Thienemanniella
91a. Preanal papillae absent; anal prolegs reduced or absent; mental plate with a reduced number of teeth (Figs. 70, 71)

91b. Preanal papillae present; anal prolegs normal; mental plate with several pairs of teeth that are usually distinct ... 93
92a. Mental plate with spine-like lateral teeth (Fig. 70); phoretic Symbiocladius
92b. Mental plate with a truncated middle tooth and 2 or 3 pairs of lateral teeth (Fig. 71)

Pseudosmittia
93a. Body with numerous long, dark setae, many longer than a body segment; center of mental plate truncated with several subequal teeth (Fig. 72); phoretic Epoicocladius
93b. Body usually without long dark setae; if long dark setae are present, middle of mental plate is convex with only 1 or 2 middle teeth

94
94a. Ventromental plates conspicuous and bearing setae (Figs. $58,73,74)$
94b. Ventromental plates, if present, without distinct setae (Figs. 78,79)

97
95a. Mental plate with 14 teeth of nearly equal size (Fig. 73)
Diplocladius
95b. If mental plate has 14 teeth, they are unequal in size. . 96
96a. Mental plate with 14 distinct teeth, first laterals small and closely applied to middle teeth (Fig. 74); last tooth of mandible shorter than distance between tips of first and third laterals

Rheocricotopus
96b. If teeth on mental plate are distinct, there are less than 14 (Fig. 58); last tooth of mandible usually longer than distance between tips of first and third laterals Psectrocladius
97a. Mental plate very dark with a broadly truncated middie tooth and 5 pairs of lateral teeth (Fig. 75) . . Cardiocladius
97b. Mental plate without a broadly truncated, dark middle tooth 98
98a. Mental plate very dark with a small middle tooth recessed between large first laterals (Fig. 76), or with 2 very long middle teeth and 4 or 5 lateral teeth (Fig. 77) Brillia
98b. Mental plate without a small recessed middle tooth or extremely long middle teeth Mental plate with 14 teeth; ventromental plates distinct (Fig. 78)

Trissocladius
99b. Mental plate with less than 14 teeth; ventromental plates sometimes distinct . 100
100a. Last tooth of mandibles at least twice as long as distance between tips of first and third laterals; mental plate with flat lateral teeth and a middle tooth with twin mesal peaks (Fig. 79); ventromental plates distinct; phoretic

Plecopteracoluthus

100b. Last tooth of mandibles much less than twice as long as distance between tips of first and third laterals; teeth on mental plate rounded or pointed; ventromental plate usually indistinct101
101a. Mental plate with an even number of teeth 102

101b. Mental plate with an odd number of teeth 104
102a. Last tooth of mandible usually no longer than first lateral tooth (Fig. 80); if longer, body with long setae

Eukiefferiella
102b. Last tooth of mandible distinctly longer than first lateral tooth (Fig. 81); body without long setae

103
103a. Antennae 7 -segmented, with segment 3 very short and segments 1, 2, and 4 elongate (Fig. 82); lateral teeth of mental plate becoming uniformly shorter laterally (Fig. 83)

Heterotrissocladius
103b. Antennae 5 -segmented, with only segments 1 and 2 elongate (Fig. 84); third lateral teeth of mental plate shorter than fourth laterals (Fig. 85)

Parametriocnemus
104a. Mental plate with 11 teeth, the middle tooth broad and peaked mesally (Fig. 84); body with several conspicuous long hairs

Eukiefferiella
104b. If mental plate has 11 teeth, the middle tooth is not broad and mesally peaked; body without long, conspicuous hairs

105
105a. Mental plate with 11 teeth, all rounded and uniformly dark (Fig. 87)

Smittia
105b. If mental plate has 11 teeth, they are not all rounded or uniformly dark . 106
106a. Mental plate evenly colored and contoured, with a rounded middle tooth and 6 pairs of lateral teeth (Fig. 88)

Orthocladius

106b. Mental plate with the middle tooth and first two lateral teeth usually paler; several species, each with one or more of the following characteristics: mental plate with only 7 or 9 teeth; outer edge of mandibles crenulate (Fig. 89); inner margin of mandibles with serrations (Fig. 90); second lateral teeth very closely applied to first laterals (Fig. 91); body with hair pencils on posterolateral margins of posterior abdominal segments (Fig. 92) Cricotopus
107a. CHIRONOMINAE - Antennae on dorsal protuberances of head, which are always longer than broad (Fig. 96); first antennal segment curved and at least 6 times as long as wide

TANYTARSINI 108
107b. Antennae not on large protuberances; first antennal segment not distinctly curved and less than 4 times as long as wide

CHIRONOMINI 113
108a. TANYTARSINI - Ventromental plates well separated, pointed at inner apices

Stempellina
108b. Ventromental plates almost meeting, bluntly rounded at inner apices (Fig. 93) 109
109a. Lauterborn organs large, longer than their petioles (Fig. 94) 110
109b. Lauterborn organs small, less than $1 / 2$ as long as their petioles (Fig. 95) . 111
110a. Petiole of lauterborn organ not more than $1 / 2$ as long as lauterborn organ; dorsal eye-spot not wider than width of basal antennal segment Paratanytarsus
110b. Petiole of lauterborn organ about $2 / 3$ as long as lauterborn organ; dorsal eye-spot wider than width of basal antennal segment
111a. Lauterborn organs about $1 / 3$ as long as their petioles; lotic

Rheotanytarsus
111b. Lauterborn organs less than $1 / 5$ as long as their petioles; lotic or lentic . 112
112a. Antennal tubercle with an inner apical spur (Fig. 96)
112b. Antennal tubercle without a spur at apex ...
113a. CHIRONOMINI - Antennae 6 -segmented, with large lauterborn organs alternating on segments 2 and $3 \ldots 114$
113b. Antennae usually 5 -segmented, without large lauterborn organs

118

114a. All teeth on mental plate unicolorous 115
114b. Middle of mental plate pale in relation to lateral teeth 116
115a. Middle pair of teeth small, first laterals large; median and first lateral teeth clearly anterior to remaining laterals (Fig. 97); mental plate with 16 teeth ... Stictochironomus
115b. Middle pair of teeth and second laterals long, first laterals small (Fig. 98)

Lauterborniella
116a. Mental plate with a single pale broad median tooth and 6 dark laterals that are progressively shorter (Fig. 99)

Paralauterborniella
116b. Mental plate with at least 2 pale median teeth 117
117a. Mental plate with 2 pale median teeth and often a minute tooth between them; lateral teeth dark, second laterals the longest (Fig. 100)

Microtendipes
117b. Mental plate with 4 pale median teeth; the third laterals the longest (Fig. 101) Paratendipes
118a. Middle of mental plate paler than lateral portions (Figs. 102, 103), basal segment of maxillary palps at least twice as long as basal width

119
118b. Mental plate uniformly dark; basal segment of maxillary palps less than twice basal width. 122
119a. Mental plate strongly concave, with pale dome-shaped middle (Fig. 102) . 120
119b. Mental plate weakly convex, center with teeth (Fig. 103)..
121
120a. Mental plate with 5 pairs of dark lateral teeth in addition to dark lateral margins of dome-shaped middle (Fig. 102)

Cryptochironomus
120b. Mental plate with 7 pairs of dark lateral teeth in addition to dark lateral margins of dome-shaped middle

Demicryptochironomus
121a. Ring organ of antenna in basal $1 / 3 \ldots$. Paracladopelma
121b. Ring organ of antenna in distal $1 / 2 \ldots . .$. .. Harnischia
122a. Ventromental plates deeply scalloped anteriorly (Fig. 104); mental plate with 7 pairs of subequal pointed lateral teeth and a pointed or mesally notched middle tooth (Fig. 104)

Parachironomus
122b. Ventromental plates not deeply scalloped anteriorly; if scalloped, mental plate has only 6 pairs of lateral teeth

123
123a. Mental plate with $1-3$ outside lateral teeth greatly enlarged and projecting beyond adjacent lateral teeth (Fig. 105); mandibles with some lateral teeth flattened apically

Cryptocladopelma
123b. Outside lateral teeth not greatly enlarged; mandibles usually with pointed lateral teeth 124
124a. Mental plate with a pair of median teeth 125
124b. Mental plate with a single median tooth 129
125a. Mental plate distinctly concave, with 10 subequal dark teeth (Fig. 106) . Stenochironomus
125b. Mental plate convex, usually with more than 10 teeth 126
126a. First lateral teeth of mental plate much shorter than median and second lateral teeth, or subequal to them (Fig. 107)

Polypedilum
126b. First lateral teeth longer than second laterals and usually longer than median teeth (Fig. 108) 127
127a. Median teeth of mental plate very small, set between tips of first laterals; second laterals longer than outer laterals

Nilothauma

127b. Median teeth not extremely small 128
128a. Striations near center of ventromental plates more distinct and usually more widely spaced than those along anterior margin

Endochironomus
128b. Striations near anterior margin of ventromental plates more distinct and usually more widely spaced than those near center

Phaenopsectra
129a. Ventromental plates joined, or separated from each other by less than width of middle tooth of mental plate ... 130
129b. Ventromental plates separated by more than width of middle tooth 131
130a. Ventromental plates elongate, more than 4 times as wide as long and rounded mesally; mental plate with first lateral teeth about as long as rounded middle tooth (Fig. 109) ..

Pseudochironomus
130b. Ventromental plate pointed mesally, less than 4 times as wide as long; first lateral teeth of mental plate small (Fig. 110)

Xenochironomus
131a. Ventromental plate less than $1-1 / 2$ times as wide as long and crenulate anteriorly (Fig. 111); second lateral teeth on mental plate smaller than, and closely applied to first laterals (Fig. 111)

Dicrotendipes
131b. Ventromental plates at least twice as wide as long; second laterals not as above . 132
132a. Mental plate with a simple or slightly notched median tooth and with large first laterals (Fig. 112, 113) 133
132b. Mental plate with a deeply notched median tooth or with reduced first laterals . 134
133a. Mental plate with a very large median tooth and conspicuously reduced fourth laterals (Fig. 112); ventromental plates about twice as wide as long; abdomen with one pair of ventral tubules Einfeldia
133b. Mental plate with median tooth not much larger than first laterals (Fig. 113); ventromental plates at least 3 times as wide as long (Fig. 113); ventral tubules usually absent ..

Glyptotendipes
134a. Abdomen without ventral tubules; 3-7 blunt teeth on epipharynx

Einfeldia
134b. Abdomen with ventral tubules; more than 7 teeth on epipharynx . .. 135
135a. Premandibles bifid; at most, only extreme tip of mesal edge of ventromental plate directed posteriorly (Fig. 54). .

Chironomus
135b. Premandibles with 3 or more teeth; median sixth or more of ventromental plates directed posteriorly (Fig. 114).

Kiefferulus

LITERATURE CITED

Hamilton, A. L., O. A. Saether, and D. R. Oliver. 1969. A classification of the nearctic Chironomidae. Fish. Res. Bd. Can. Tech. Rep. 124: 1-42.
International Commission on Zoological Nomenclature. 1963. Opinion 678. The suppression under the plenary powers of the pamphlet published by Meigen, 1800. Bull. Zool. Nomencl. 20: 339-342.
Stone, A., C. W. Sabrosky, W. W. Wirth, R. H. Foote, and J. R. Coulson, eds. 1965. A catalog of the Diptera of America north of Mexico. U. S. Dep. Agr. Handbook No. 276. 1696 pp.

Figures 1-29. - Diptera. 1. Ventral view of Blepharocera. 2. Dorsal view of Odontomyia. 3. Lateral view of Eristalis. 4. Lateral view of Tetanocera. 5. Lateral view of Chrysops. 6. Lateral view of Dolichopodidae. 7. Dorsal view of terminal segments of Atherix. 8. Lateral view of Empididae. 9. Lateral view of Limnophora. 10. Dorsal view of Anopheles. 11. Lateral view of head of Chaoborus showing prehensile antenna (A). 12. Dorsal view of head of Mansonia showing antennae (A). 13. Dorsal view of Psychoda. 14. Dorsal view of Palpomyia. 15. Lateral view of Dixella. 16. Dorsal view of posterior segments of Dixa. 17. Lateral view of Ptychoptera. 18. Lateral view of Cnephia. 19. Lateral view
of Chironomus. 20. Dorsal view of head of Euparyphus. 21. Dorsal view of head of Odontomyia. 22. Antenna of Chrysops. 23. Antenna of Tabanus. 24. Spiracular disc of Sepedon showing ventral (V) and ventrolateral (VL) lobes. 25. Sclerites of head of Renocera showing ventral arch (VA), mouth hooks (M), hypostomial sclerites (H), and pharyngeal sclerite (P). 26. Sclerites of head of Elgiva showing ventral arch (VA), mouth hooks (M), hypostomial sclerite (H), and pharyngeal sclerite (P). 27. Ventral arch of Dictya. 28. Ventral arch of Sepedon. 29. Ventral arch of Elgiva.

Figures 30-55. - Diptera. 30. Spiracular disc of Prionocera. 31. Spiracular disc of Dicranota. 32. Dorsal view of Antocha. 33. Dorsal view of head of Hexatoma (dissected out of thorax). 34. Dorsal view of head of Limonia (dissected out of thorax). 35. Ventral view of head of Limnophila (dissected out of thorax). 36. Spiracular lobes of Pilaria. 37. Spiracular lobes of Hexatoma. 38. Spiracular lobes of Pseudolimnophila. 39. Spiracular lobes of Erioptera. 40. Lateral view of terminal segments of Culiseta showing siphon (S), pectin (P), and basoventral hair tuft (B). 41. Dorsal view of head of Uranotaenia showing upper (U) and lower (L) head hairs. 42. Siphon of Culex. 43. Terminal segments of Psorophora. 44. Terminal segments of Aedes. 45. Siphon of

Mansonia. 46. Siphon of Wyeomyia. 47. Ventral view of last abdominal segments of Pericoma showing preanal (P) and adanal (A) plates. 48. Dorsal view of Culicoides. 49. Mental plate of Prosimulium. 50. Lateral view of abdomen of Eusimulium showing ventral tubercle (T). 51. Mental plate of Simulium. 52. Mental plate of Cnephia. 53. Ventral view of head of Procladius showing dorsomental combs (D) and ligula (L). 54. Ventral view of head of Chironomus showing mental plate (M), ventromental plates (V), and epipharyngeal teeth (E). 55. Ventral view of head of Prodiamesa showing mental plate (M), and ventromental plates (V).

Figures 56-85. - Diptera. 56. Antenna of Diamesa. 57. Mental and ventromental plates of Monodiamesa. 58. Mental and ventromental plates of Psectrocladius. 59. Ligula of Tanypus. 60. Mandible of Tanypus. 61. Ligula of Psectrotanypus. 62. Mandible of Clinotanypus. 63. Mandible of Coelotanypus. 64. Lateral view of terminal segments of Pentaneura showing preanal papillae (P), supra-anal bristles (S), and anal papillae (A). 65. Ligula of Zavrelimyia. 66. Ligula of Conchapelopia. 67. Mandible of Potthastia. 68. Mental plate of Sympotthastia. 69. Mental plate of Diamesa. 70. Mental plate of Symbiocladius. 71. Mental plate of Pseudosmittia. 72. Mental
plate of Epoicocladius. 73. Mental and ventromental plate of Diplocladius. 74. Mental and ventromental plates of Rheocricotopus. 75. Mental plate of Cardiocladius. 76. Mental plate of Brillia. 77. Mental plate of Brillia. 78. Mental and ventromental plates of Trissocladius. 79. Mental and ventromental plates of Plecopteracoluthus. 80. Mandible of Eukiefferiella. 81. Mandible of Heterotrissocladius. 82. Antenna of Heterotrissocladius showing very short third segment (3). 83. Mental plate of Heterotrissocladius. 84. Antenna of Parametriocnemus. 85. Mental plate of Parametriocnemus.

Figures 86-114. - Diptera. 86. Mental plate of Eukiefferiella. 87. Mental plate of Smittia. 88. Mental plate of Orthocladius. 89. Mandible of Cricotopus. 90. Mandible of Cricotopus. 91. Mental plate of Cricotopus. 92. Dorsal view of abdominal segments 5-8 of Cricotopus. 93. Mental and ventromental plates of Tanytarsus. 94. Terminal antennal segments of Paratanytarsus showing lauterborn organs (L). 95. Terminal antennal segments of Tanytarsus showing lauterborn organs (L). 96. Antenna of Micropsectra showing spur (S) on tubercle. 97. Mental plate of Stictochironomus. 98. Mental plate of Lauterborniella. 99. Mental plate of Paralauterborniella. 100. Mental plate of Microtendipes. 101.

Mental plate of Paratendipes. 102. Mental plate of Cryptochironomus. 103. Mental plate of Paracladopelma. 104. Mental and ventromental plates of Parachironomus. 105. Mental plate of Cryptoc/adopelma. 106. Mental plate of Stenochironomus. 107. Mental plate of Polypedilum. 108. Mental plate of Endochironomus. 109. Mental and ventromental plates of Pseudochironomus. 110. Mental and ventromental plates of Xenochironomus. 111. Mental and ventromental plates of Dicrotendipes. 112. Mental plate of Einfeldia. 113. Mental and ventromental plates of Glyptotendipes. 114. Mental and ventromental plates of Kiefferulus.
angulate - forming an angle; not rounded.
annulate - ringed; surrounded by a ring of a different color; formed in ringlike segments.
annulus (annuli) - ring.
apex - that part of any structure opposite the base by which it is attached.
apical - pertaining to the apex.
basal - at or pertaining to the base or point of attachment to or nearest the main body.
beard - fringed with hair or long setae.
bifid - cleft, or divided into two parts; forked.
bifurcate - divided partly, or forked into two.
bilamellate - divided into two lamellae or plates.
brachypterous - with short or abbreviated wings.
bristle - a stiff hair, usually short and blunt.
bulbous - bulb-like; swollen.
carapace - a hard covering.
cilia - fringes; series of moderate or thin hair arranged in tufts or single lines.
ciliate - fringed with a row of parallel hairs or cilia.
clypeus - that part of the head between the frons and labrum.
creeping welt - a slightly raised, often darkened structure on dipteran larvae.
crenula - a small scallop.
crenulate - with small scallops, evenly rounded and rather deeply curved.
crochets - the curved spines or hooks on the prolegs of Lepidoptera larvae.
cupule - a cup-shaped segment at the base of the club on some antennae.
decurved - bowed or curved downward.
effaced - obliterated; rubbed out.
emarginate - notched; with an obtuse, rounded, or quadrate section cut from a margin.
epicranial suture - a Y-shaped suture on the dorsal surface of the head.
fibrilliform - in the form of many threads.
filiform - threadlike; slender and of equal diameter.
fossorial - formed for or with the habit of digging or burrowing.
frons - front of head between arms or epicranial suture.
frontal sutures - the arms of the epicranial suture.
galea - the outer lobe of the maxilla.
gena (genae) - the cheek; the part of the head on each side below the eyes, extending to the gular suture.
glossa (glossae) - one of the two median terminal lobes of the labium.
gula - the throat sclerite, forming the central part of the head beneath the genae.
hypopharynx - a structure on the upper and inner part of the labium.
impressed - pushed inward; shallowly depressed.
incised - notched or deeply cut into.
infuscate - smoky gray-brown, with a blackish tinge.
interocular space - the space between the eyes.
lacinia (laciniae) - the inner blade-like segment of the maxilla that bears brushes of hairs or spines.
lamella - a thin plate or leaflike process.
laminate - composed of or covered with thin plates.
lanceolate - lance- or spear-shaped; oblong and tapering to the end.
lentic - pertaining to still water.
ligula - the central, apical segment of the labium.
linear - straight; elongate; in the form of a straight line.
lotic - pertaining to moving water.
mentum - the distal segment of the labium bearing the movable parts and attached to the submentum.
mesal - pertaining to the middle; toward the middle.
moniliform - beadlike.
mouth hook - vertically oriented mandible-like structure in dipteran larvae.
muscle scar - a dark or light ovoid mark that contrasts with the background.
obsolete - mostly or entirely absent; indistinct; not fully developed.
occipital - of or pertaining to the occiput.
occiput - the back part of the head.
ocellus (ocelli) - the simple eye in insects consisting of a single, bead-like lens, occurring singly or in small groups.
pala - the much dilated anterior tarsal joint in Corixidae.
papilla (papillae) - a soft projection.
paraglossa (paraglossae) - the lateral terminal lobes of the labium.
phoretic - living on another animal, but not feeding on it.
pilose - covered with numerous soft, short setae.
pleuron - the pleural area (side) of each segment.
postocular space - space between the back of the eyes and the occipital opening.
process - a prolongation of the surface, or a margin, or an appendage; any prominent part of the body not otherwise definable.
proleg - any process or appendage that serves the purpose of a leg.
pruinose - as if frosted or covered with a fine dust.
pseudobasal - appearing to be basal.
pseudopod - a soft, foot-like appendage.
punctate - set with impressed points or punctures.
rasirate - covered with longitudinal scratches.
reticulate - covered with a network of lines.
rostrum - a beak; a snout-like projection of the head bearing the mouthparts.
scalloped - with the edge marked with rounded hollows, without intervening angles.
sclerite - any piece of the insect body wall bounded by sutures.
sclerotized - hardened and usually darkened.
scutellum - in Coleoptera and Hemiptera, the triangular piece between the bases of the elytra or hemelytra.
seta (setae) - slender, hairlike appendage; hair.
setose - furnished or covered with setae or stiff hairs.
siphon - a caudal respiratory tube of dipteran larvae.
spine - a multicellular, thornlike process or outgrowth of the cuticula not separated from it by a joint.
spinule - a very small spine.
spur - a spinelike appendage of the cuticula, connected to the body wall by a joint.
sternum - the entire ventral division of any segment.
stipes - the second segment of the maxilla, the segment to which movable parts are attached.
stria (striae) - a fine, longitudinally impressed line.
strigil - a dark, roughened structure on the dorsolateral portion of the abdomen of Corixidae.
subequal - almost or nearly equal.
submentum - the basal segment of the labium.
suture - a seam or impressed line indicating the division of the distinct parts of the body wall.
tergum - the upper or dorsal surface of any body segment of an insect.
tomentum - a form of pubescence composed of matted, woolly hair.
triquetral - triangular in cross-section.
trochantin - a small, forward projecting sclerite at the base of the trochanter.

-ACKNOWLEDGMENTS

This research was supported by the College of Agricultural and Life Sciences and the Wisconsin Department of Natural Resources (under the Water Resources Research and Data Collection Program).

Edited by Ruth L. Hine

-ABOUT THE AUTHOR

Prof. Hilsenhoff is with the Department of Entomology, University of Wisconsin, Madison, 53706.
tubule - a small, elongate tubelike structure.
vertex - top of head between eyes.
vestigial - small or degenerate.
vitta (vittae) - a broad longitudinal stripe.
whorl - a ring of setae about a joint or center - like spokes of a wheel.

NATURAL RESOURCES BOARD

HAROLD C. JORDAHL, JR., Chairman UW-Madison
THOMAS P. FOX, Vice-Chairman
Washburn
MRS. G. L. McCORMICK, Secretary Waukesha
JOHN C. BROGAN
Green Bay
LAWRENCE DAHL
Tigerton
DANIEL T. FLAHERTY
La Crosse
CLIFFORD F. MESSINGER
New Berlin

DEPARTMENT OF NATURAL RESOURCES

L. P. VOIGT

Secretary
JOHN A. BEALE
Deputy Secretary

TECHNICAL BULLETINS (1972-75)*

No. 52 Mercury levels in Wisconsin fish and wild life (1972) Stanton J. Kleinert and Paul E. Degurse

No. 53 Chemical analyses of selected public drinking water supplies (including trace metals). (1972) Robert Baumeister
No. 54 Aquatic insects of the Pine-Popple River, Wisconsin. (1972) William L. Hilsenhoff, Jerry L. Longridge, Richard P. Narf, Kenneth J. Tennessen and Craig P. Walton
No. 56 A Ten-Year Study of Native Northern Pike in Bucks Lake, Wisconsin Including Evaluation of an 18.0 -inch Size Limit. (1972) Howard E. Snow and Thomas D. Beard
No. 57 Biology and Control of Selected Aquatic Nuisances in Recreational Waters. (1972) Lloyd A. Lueschow
No. 58 Nitrate and Nitrite Variation in Ground Water. (1972) Koby T. Crabtree

No. 59 Small Area Population Projections for Wiscon\sin. (1972) Douglas B. King, David G. Nichols and Richard J. Timm
No. 60 A Profile of Wisconsin Hunters, (1972) Lowell L. Klessig and James B. Hale
No. 61 Overwinter Drawdown: Impact on the Aquatic Vegetation in Murphy Flowage, Wisconsin. (1973) Thomas D. Beard

No. 63 Drain Oil Disposal in Wisconsin. (1973) Ronald O. Ostrander and Stanton J. Kleinert

No. 64 The Prairie Chicken in Wisconsin. (1973) Frederick and Frances Hamerstrom
No. 65 Production, food and harvest of trout in Nebish Lake, Wisconsin. (1973) Oscar M. Brynildson and James J. Kempinger
No. 66 Dilutional pumping at Snake Lake, Wisconsin a potential renewal technique for small eutrophic lakes. (1973) Stephen M. Born, Thomas L. Wirth, James O. Peterson, J. Peter Wall and David A. Stephenson
No. 67 Lake sturgeon management on the Menominee River. (1973) Gordon R. Priegel
No. 68 Breeding duck populations and habitat in Wisconsin. (1973) James R. March, Gerald F. Martz and Richard A. Hunt
No. 69 An experimental introduction of coho salmon into a landlocked lake in northern Wisconsin. (1973) Eddie L. Avery

No. 70 Gray partridge ecology in southeast-central Wisconsin. (1973) John M. Gates
No. 71 Restoring the recreational potential of small impoundments: the Marion Millpond experience. (1973) Stephen M. Born, Thomas L. Wirth, Edmund O. Brick and James O. Peterson

No. 72 Mortality of radio-tagged pheasants on the Waterloo Wildlife Area. (1973) Robert T. Dumke and Charles M. Pils

No. 73 Electrofishing boats: Improved designs and operating guidelines to increase the effectiveness of boom shockers. (1973) Donald W. Novotny and Gordon R. Priegel
No. 74 Surveys of toxic metals in Wisconsin. (1974) John G. Konrad et al.
No. 75 Survey of lake rehabilitation techniques and experiences. (1974) Russell Dunst et al.
No. 76 Seasonal movement, winter habitat use, and population distribution of an east central Wisconsin pheasant population. (1974) John M. Gates and James B. Hale
No. 77 Mechanical and habitat manipulation techniques for aquatic plant management. (1974) Stanley A. Nichols
No. 78 Hydrogeologic evaluation of solid waste disposal in south central Wisconsin. (1974) Alexander Zaporozec
No. 79 Effects of stocking northern pike in Murphy Flowage. (1974) Howard E. Snow
No. 80 Impact of state land ownership on local economy in Wisconsin. (1974) Melville H. Cohee
No. 81 Influence of organic pollution on the density and production of trout in a Wisconsin stream. (1975) Oscar M. Brynildson and John W. Mason

No. 82 Annual production by brook trout in Lawrence Creek during eleven successive years. (1974) Robert L. Hunt
No. 83 Lake sturgeon harvest, growth, and recruitment in Lake Winnebago, Wisconsin. (1975) Gordon R. Priegel and Thomas L. Wirth

No. 84 Estimate of abundance, harvest, and exploitation of the fish population of Escanaba Lake, Wisconsin, 1946-69. (1975) James J. Kempinger, Warren S. Churchill, Gordon R. Priegel, and Lyle M. Shristenson
No. 85 Reproduction of an east central Wisconsin pheasant population. (1975) John M. Gates and James B. Hale
No. 86 Characteristics of a northern pike spawning population. (1975) Gordon R. Priegel
No. 87 Aeration as a lake management technique. (1975) S. A. Smith, D. R. Knauer and T. L. Wirth

No: 88 Guidelines for the application of wastewater sludge to agricultural land in Wisconsin. (1975) Dennis R. Keeney, Kwang W. Lee and Leo M. Walsh

[^1]
[^0]: * Adapted for Wisconsin from a manuscript by Lloyd V. Knutson

[^1]: - Complete list of all technical bulletins in the series available from the Department of Natural Resources, Box 450, Madison, Wisconsin 53701.

